1—F—8 2001 EEHAA RV — Y 3 /Xgéé?;%%%’g
A Newton-PCG Like Algorithm Based on the
Progress Behavior of Newton’s Method
Ping Zhong
China Agricultural University, Beijing

Abstract

It is known that the Newton-PCG like algorithms are generally very suc-
cessful, which is shown by a large amount of numerical experiments, but
unfortunately short of theoretical justification on its efficiency. Recently,
a theoretical analysis of the efficiency is developed in [5], which shows
that the efficiency of a Newton-PCG like algorithm is theoretical superior
to that of Newton’s method under the assumption: Newton’s method
is precisely quadratically convergent. In this paper, the assumption in
[5] is weékened to a more general case, and an encouraging theoreti-
cal analysis on the efficiency of a modified Newton-PCG like algorithm
is obtained. It further shows the superiority of the Newton-PCG like
algorithm from the theoretical point of view.

Key words: Newton’s method, Preconditioned conjugate gradient?

method

1 Introduction
We are interested in the local algorithm for the unconstrained optimization problem
min f(z), z € R", (1.1)

where f(z) satisfies

Assumption 1. The problem (1.1) has a solution z* with a symmetric positive definite
Hessian 72 f(z*).

Assumption 2. In a neighborhood of z*, the Hessian V2f is Lipschitz continuous.

Newton like methods are usually considered as the best methods provided that the
Hessian matrix V2f is available. Based on the analysis on the inexact Newton method

in [3] and the properties of conjugate gradient method (CG method) (see e.g. [8] and

— 138 —

[7]), Steihaug and Toint proposed Newton-CG like algorithms (see [9] and [10]), where
the Newton equation was solved by CG method approximately. Later, these algorithms
were well developed to a kind of Newton-PCG like algorithms, where the CG method was
replaced by PCG method (preconditioned CG method). It has been shown by a large
amount of experiments that, generally speaking, Newton-PCG like algorithms are very
successful (see e.g. [1], [6] and [4]), but unfortunately short of theoretical justification on
its efficiency. |

Recently, a Newton-PCG like algorithm is proposed in [5]. It has been shown that the
algorithm in [5] has the same convergence order as Newton’s method’s, but theoretically,
its average number of arithmetic operations per step is much less than the corresponding
number of Newton’s method for middle and large scale problems. However, all of the
above conclusions are obtained under the assumption that Newton’s method is precisely
quadratically convergent, i.e. there exist positive scalars 61, My > M; > 0, such that

when ||z — z*|| < 61, the Newton iterate z, = x — V2f(z) "1V f(z) satisfies
Mz - 2*||* < ||lz4 — 2*|| < Mallz — *||? (1.2)

Obviously, the assumption (1.2) is very strong. Moreover, its validity is difficult to be
verified even it actually holds.

In fact, for the general case (under Assumptions 1 and 2), Newton’s method has at
least Q-quadratic order of convergence, i.e., there exist positive scalars 62, M3 > 0, su.ch

that when ||z — z*|| < 62, the Newton iterate z, = z — V2f(2) "1V f(z) satisfies
lz4 = 2*|| < Msllz — 2*||*. (1.3)

This paper deals with the above general case. Our algorithm consists of circles. The basic
structure of a circle is that every exact Newton step is followed by several PCG steps.
The number of the PCG steps depends on the progress of the previous exact Newton step.
Therefore, the algorithm depends on the behavior of Newton’s method.

Our algorithm has the following properties: for a fixed dimension 7, there exists a
critical value such that when the progress speed of Newton’s method is smaller than

it, our algorithm is superior to Newton’s method. In addition, when (1.2) is valid, our

—139—

algorithm and the one in [5] have the same efficiency estimates from the theoretical point

of view.

2 A one-dimensional optimization problem

Our algorithm is concerned with the following one-dimensional optimization problem with

respect to K

K
1+ Y o(a,m)Q(n)

. : : _ _ m=1
P(n,a) : min u(K;n,a) = e , (2.1)

s.t. K is a nonnegative integer, (2.2)

where n is the dimension of (1.1), « is a parameter, (7, q) is an integer function defined

by

(197 1) < pl(r,) < (1)%(r = 1) +1 (@3)

and @Q(n) is defined by |
Q(n) = (2n% + 6n + 2)/(n%/6 + 3n?/2 — 2n/3). (2.4)
(Note that when K = 0, we define the ‘sum’ 3% _; ... = 0). In fact, in the i-th circle,

the number p; of the PCG steps should be selected to be the solution to (2.1)-(2.2) with
o = a;. However, if the problem (2.1)-(2.2) with different a; is solved respectively, the
corresponding computation cost will break down the theoretical efficiency of the algo-
rithm. This is the main difficult when the algorithm in [5] is extended. Fortunately, the
solution has an analytic expression as shown in Theorem 2.1 below. By this expression,

the solutions to various values of o; can be obtained easily without solving the problem

numerically.

Theorem 2.1 Consider the problem P(n,a) with a fized positive integer n. If o > 2,

then there exists the smallest global solution K*(n,a). Furthermore, setting ¢ = K*(n,2),

there are g + 1 scalars

bg = bo(n) > b1 = bi(n) > -+ 2 by = bq(n) =2, (2.5)

— 140 —

such that K*(n,a), as a function of a, can be expressed as

0, when a € [bp(n), 00);
K*(n,0) = J 1, when a € [b1(n), bo(n)); (2.6)
q, ~ when o € [bq(n))bq—l(n)),

\

where the interval [bj, b;_1) is empty if b; = bj_1,7 =1,---,q.

Theorem 2.2 The optimal value u*(n,a) to the problem P(n,c) is nondecreasing with

respect to a.

3 Algorithm

Algorithm
Step 0. Initial data: choose the initial point 2% € R®. Set k = 0. Go to Step 3.

Step 1. Termination test: if || 7 f(z*)|| = 0, stop.
Step 2. Switch test: if & < by defined in Theorem 2.1 and m < pg, go to Step 4;

otherwise go to Step 3.

Step 3. Exact Newton step: find the exact solution s* to the Newton equation and

estimate the progress of Newton’s method as follows:

3.0 Find the solution s* to the Newton equation
V2 f(*)s = — v f(z¥) (3.1)

by Cholesky factorization 72 f(z*) = Ly DL} .

3.1 Set v = zF and B = ¥2f(z*). Set zF*+1 = 2F + s* and m =1

3.2 Compute |
o1 = In || v fF(@H)]|/In|lv — =, (3.2)
and set
axy1 = max{agi1, 2} | (3.3)
3.3 Set

Pk+1 = K*(na&k+l)) (34)

—141 —

where K*(n, &g+1) is defined by (2.6) in Theorem 2.1 with o there being replaced by & 1.
Go to Step 5.

Step 4. PCG step: find s* by Algorithm PCG(B™1, V2f(z*), =V f(zF), I, Im/(@)™),
where I, = ¢(&x, m) defined by (2.3) with a there being replaced by @r. Set Gri1 = ax,
Pry1 =Dk Set zFtl =2k 4 sFand m=m + 1.

Step 5. Set k =k + 1, and go to Step 1.

Note: Algorithm PCG(C, A, b, [, e) is the standard preconditioned conjugate gradient
method (see e.g. [7]), which is used to solve the linear system As = b, where C is the
preconditioner, [is the maximum number of subiterations, and e is a scalar used in the

termination criterion.

For convenience, the segment of {z*} generated by i-th circle of the algorithm is

expressed as follows:

{xk}£i+,1(;(p$1) = {gitD) gD+l i)t p(H)(it]))
=UP:)) b} y

= {zf, h* ... gimml gdi) (3.5)

)

where ji41 = 7 +pi + 1.

4 The convergence speed of our algorithm

We assume therefore that the following assumption holds, where the scalars o; and oy 'in

the following Assumption 3 characterize the convergence speed of Newton’s method. It

reduces to (1.2) when a; = o, = 2.

Assumption 3. There exist § > 0, M; > M, > 0, o; and o4, such that when

|lzc — || < 6,

Mpllze — z*||°* < lloy — 27| < Miflze — 27|,

where z. is the Newton mapping: =4 = 7. — V2f(z) IV f(ze).

The next theorem shows the convergence speed of our new algorithm.

—142 —

Theorem 4.1 Under Assumptions 1-3, there exists § > 0 such that when ||a:3\‘,—:c*|| < 6,

the segment (8.5) satisfies
e — o* || < M| — o[= (41)

where M is a constant which depends only on V?f(z*) and Lipschitz constant L.

5 Efficiency Comparison

Now we shall reply the question that compared with Newton’s method, whether and how -
much saving our algorithm can be expected in theory. According to Theorem 4.1, it is
reasonable to consider that their progress speed are almost the same. So we only need to
investigate the computation cost of both our algorithm and Newton’s method. To obtain
a new iterate, the computation cost consists of the following two parts:

(1) evaluating one Hessian 72f and one gradient 17 f which yield a Newton équation.

(2) solving the Newton equation(using different ways). |

However, for a significant number of widely differing application problems, the linear-
algebra cost of the part (2) tends to dominate (see e.g.[2]). So in order to compare their
efficiency, we are mainly interested in comparing their arithmetic operations in solving
Newton equations, or for simplicity, comparing only their nu‘mbers of the multiplicative
operations involved.

For Newton’s method with Cholesky factorization, the number of the multiplication

operations to solve a Newton equation is

_ 13 3., 2
QN—6n +2n 3n.

However, the corresponding number of our algorithm is different in different iterations.

So, we consider its average value in j;+1 — j; iterations in the segment (3.5):
wj; = Wi/ (Gar1 — Ji),

where Wj, is the total number of the multiplicative operations involved in solving the

Newton equations to obtain z7+! from z7* in our algorithm.

—143 —

Definition 5.1 Cost Ratiold : suppose that the sequence {z*} is generated by our algo-
rithm, and {z%*,i = 0,1,---} is its subsequence. The ratio of computation cost in solving
Newton equations by our algorithm against the Newton’s method is defined by

1 = sup{limsup Y for any {z*} which is generated by
(z*} k—oo QN

our algorithm and converges to z*}. (5.1)

Theorem 5.1 If ap < by, the ratio n defined by (5.1) satisfies
n < ui(n,ap) <1, (5.2)

where ap and by are given in Assumption 3 and Theorem 2.1 respectively, u*(n,ap) is
the optimal value to the one-dimensional optimization problem P(n,ap) defined by (2.1)

- (2.4) with o there being replaced by ay,.

It is shown by Theorem 5.1 that the upper bound u*(n, ap,) of cost ratio n depends on
the value of oy, which, to some extent, reflects the progress speed of Newton’s method. In
fact, there exists a critical value by such that when the progress speed of Newton’s method
is smaller than it, our algorithm is superior to Newton’s method. According to Theorem
2.2, the smaller the value of ap, the smaller the value of u*(n, ap). The following table lists
some typical value of u*(n,) and, therefore generally speaking, shows our algorithm is

much more efficient than Newton’s method.

n
ap 100 200 300 400 500 1000
2 67 .53 .46 43 41 .33
2.5 73 .61 .52 47 44 .36
3 .84 .70 .64 .59 .04 44

Table 5.1: The values of u*(n, ap)

— 144 —

References

[1] A.R.Conn, N.I.M.Gould, and P.L. Toint, LANCELOT: A Fortran Package for
Large-Scale Nonlinear Optimization (Release A), Springer Ser. Comput. Math. 17,
Springer-Verlag, Heidelberg, Berlin, New York, 1992.

(2] A. R. Conn, N. I. M. Gould and Ph. L. Toint, Numerical experiments with the
LANCELOT package (Release A) for large-scale nonlinear optimization, Technical
Report, 92-075, Rutherford Appleton Laboratory, Chilton, England, 1992.

[3] R. Dembo, S. Eisenstat, and T. Steihaug, Inezact Newton method, SIAM Journal
on Numerical Analysis, 19 (1982), 400-408.

[4] L. C. W. Dixon and R. C. Price, Numerical ezperience with the truncated Newton
method for unconstrained optimization, Journal of Optimization Theory and Appli-

cations, 56(1988), 245-255.

[5]) N. Y. Deng and Z. Z. Wang, Theoretical efficiency of an inezact Newton method, in
Journal of ‘Optimization Theory and Applications, 105(2000), 97-112.

[6] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inezact Newton

method, SIAM Journal on Scientific Computing, 17(1996), 33-46.

(7] C.T.Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadel-
phia, 1995.

[8] J. Nocedal and S.J. Wright, Numerical Optimization, Springer, 1999.

[9] T. Steihaug, The conjugate gradient method and trust region in large scale optimiza-

tion, SIAM Journal on Numerical Analysis, 20(1983), 626-637.

" [10] P.L.Toint, Towards an Efficient Sparsity Ezploiting Newton Method for Minimiza-
tion, Sparse Matrices and Their Uses, Edited by I.S. Duff, Academic Press, London,

England, 1981, 57-88.

— 145 —

