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1. Introduction

Software reliability is one of the most important factor
in the development of modern computer systems, because
the software errors of computer systems, which are utilized
in financial institutions and other industries, will cause a
great deal of damage to our lives. If we can develop a
fault-free program, the software system will seldom fail.
However, it will be impossible to detect all the software
faults within a limited testing period and resources, espe-
cially for a complex and large scaled software. Hence, the
software reliability has to be assessed quantitatively before
being released to the user or market. Usually, the software
reliability is estimated based on the stochastic dynamics
of detecting software faults, i.e. a sequence of inter-failure
time and cumulative number of faults. Then, the stochastic
models called software reliability growth models are useful
to assess the software reliability [1].

In general, the software reliability growth models can be
classified into two types; a black-boz model and a white-box
model. The black-box model focuses only on the time series
behavior of detected faults, such as a sequence of inter-
failure time and cumulative number of faults. The most
classical but well-known black-box model is the Jelinski
& Moranda model [2]. In the Jelinski & Moranda model,
it is assumed that the detection rate of software faults is
proportional to the number of faults remaining in the soft-
ware. More precisely, when the total number of faults in
the software system, N (> 0), is given, it is assumed in the
Jelinski & Moranda model that the fault detection rate
depends on the cumulative number of faults experienced
before, n (< N), and that the total number of detected
faults follows the pure birth process with transition rate:

Hn = (N— n + 1)/—") (1)

where g (> 0) is a positive constant.

However, it is pointed out that the black-box model
needs obviously a large number of data to perform the
accurate prediction, and ignores completely the software
architecture which is the most important factor to affect
the software reliability. Generally speaking, a software sys-
tem is consisted of a number of modules or components,
which can be regarded as functions in program sources.
Since the software is executed in the unit of component on

programmed logic, the program behavior should be consid-
ered to be stochastic in terms of execution time. This tells
us that the software reliability strongly depends on both
the component reliability for each active component and
the transition behavior between components. From these
reasons, the white-box models depending on the software
structure recently receive considerable attentions to assess
the reliability for highly critical software systems.

First, Littlewoed {3, 4] proposed a component-based
software reliability model. In the Littlewood model, it is
assumed that the software component is executed accord-
ing to a continuous-time Markov chain (CTMC). Since the
seminal contribution by Littlewood [3, 4], many kinds of
component-based software reliability models have been de-
veloped in the literature. Ledoux {5] developed an extended
component-based model by introducing the concept of pri-
mary failures and secondary failures. Note that the Ledoux
model is described as a versatile Markov process which is
the most wide class of Markov point process. In this pa-
per, we extend the classical Littlewood model from the
different point of view. In the earlier literature [3-6], the
component- based software reliability models are modeled
to assess the software reliability in operational phase. Since
the software test is sufficiently executed before releasing,
it is assumed that the software system in the operational
phase does not show the reliability growth phenomenon
any longer. In other words, the existing component-based
models focus on the operational reliability and do not take
account of the reliability assessment in the testing. In the
following section, we extend the Jelinski & Moranda model
in terms of software structure and propose a somewhat
different component-based software reliability model from
Littlewood {3, 4].

2. Model Description

Let us consider a software system which consists of m
components. One component is always being executed
while the system is active. The currently executed com-
ponent is called the active component. The active com-
ponent frequently changes with the passage of time. It is
assumed that the dynamic behavior of the active compo-
nent is described by a CTMC with an infinitesimal gener-

ator M. The active component at the initial time (initial



configuration) is selected based on the probability vector
~a = (o1,...,0m). Software failures are caused only by
faults in an active component, not in the other inactive
ones. The fault detection rate depends on the components,
where the fault detection rate vector, whose element cor-
,Him). When
a software failure caused by a fault occurs, then it is de-

responds to each component, is p = (p,...

tected immediately, removed and/or repaired with no de-
layed time. Hence, after the repair, the software reliability
will grow up.

In this paper, we make the following assumptions;

A. The interface failures at transition of an active com-
ponent do not occur with probability one. Namely,
there is no software fault in the interface among com-
ponents.

B. The repair/remove time for a detected fault can be
negligible.
C. The software system is reinitialized after repair-

ing/removing a fault, i.e., the software test is
restarted from the initial software component config-

uration.

We define the size vector w = (w, . ..,wm) whose i-th ele-
ment represents the relative size of component i, where the
total sum of elements is 1. For example, when the software
components can be regarded as computer programs, the
component size can be interpreted as the amount of their
source code. The number of faults in each component is
assumed to be proportional to the size of component. Let
N denote the number of faults in the software system at
the initial time ¢t = 0. Thus, the number of faults in each
component can be expressed by Nw at the initial time.

Let P;;j(n,t) denote the probability that n faults are de-
tected at time ¢t and the active component changes from 4
to 7, t.e.,

Pij(n,t)
— Pr{N(t) =n,J({t) = j | N(0) = 0,J(0) = i},
(2)

where {N(t), t > 0} is the cumulative number of faults de-
tected up to time ¢t and {J(t), t > 0} is the index on the ac-
tive component. We define a matrix P(n,t) with elements
P;j(n,t). From the well-known Chapman-Kolmogorov for-
ward equation, we have

%p(o, ) = P(0,t)M(0), @)

a('iip("" Yy = P(nt)Mn)
~P(n-1,t)M(n—-1e"a, (4)
(n=12,---,N-1),

%p(zv, ) = —P(N—1,)M(N-1eTa, (5)
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where eT is a column vector with elements 1, and
M(n) = M — (N — n)diag(wi 1, . .., wWmpm). (6)

If the software involves only one component, the present
model is then reduced to the Jelinski & Moranda model [2].
In other words, our model includes the Jelinski & Moranda
model as a special case, and can be regarded as an extended
model taking account of the software architecture.

From the familiar Markovian argument, it is easily seen
that the MTBF (mean time between failures) for the n-th
detected fault is ' '

MTBF(n) = a{M(n — 1)} 'e’. (7)

By solving the difference-differential equations (4)—(6), the
expected cumulative number of faults detected up to time
t is given by

N
E[N(t) = a Y nP(n,t)e’. (8)
. n=0
Further differentiating E[N(t)] with respect of ¢ yields
N-1 )

%E[N(z)} = —a ¥ P(n,OMn)e’. )

n=0
Hence, the instantaneous MTBF and the cumulative
MTBEF are given by

1
MTBF,(t) = BNV (10)
and ;
MTBFc(t) = BIVET (11)
respectively.
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