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1. Introduction .

The software rejuvenation is one of the most effective
preventive maintenance technique for operational software
systems with high assurance requirement. Garg, et al. [1]
and Okamura, et al. [2] proposed two types of periodic
rejuvenation policies for a transaction based software sys-
tem, where transactions arrive at the system and are pro-
cessd randomly. In this article, we develop new software
rejuvenation policies based on the number of transactions
completed. Applying the familiar technique based on the
hidden Markov process, we give numerical computation
procedures on the system dependability measures, such as
steady-state availability and the loss probability of trans-

actions.

2. Model Description _

Consider the similar but somewhat different software
system with single server from Garg, et al. [1]. Suppose
that a buffer is empty at time ¢ = 0 and that the trans-
actions arrive at the system in accordance with the homo-
geneous Poisson process with rate A (> 0). If the buffer
is empty, then the process for the transactions are started
with ‘service rate u(-) (> 0), otherwise, the transactions
are accumulated in the buffer until the server is available,
where the service rate u(-) is a function dependent of the
cumulative operation time ¢ and/or the number of trans-
actions in the buffer. More precisely, let {X;;¢ > 0} be the
number of transactions accumulated in the buffer at time
t. Then, the service rate is given by u(t), u(X:) or u(t, Xe).
It is assumed that the buffer size is fixed as K (> 1). If
a transaction arrives at the system when the number of
transactions in the buffer is K, it will be rejected from the
system. We also suppose that the server is unreliable and
that the failure rate p(-) also depends on the cumulative
operation time t and/or the number of transactions in the
buffer. If the system fails, then the recovery (repair) is
started immediately, where the recovery time is the i.i.d.
random variable Y; with E[Y;] = v, (> 0). If an additional
transaction arrives at the system during the recovery op-
eration, it will be lost.

On the other hand, the software rejuvenation is moti-
vated if the software failure rate p(-) is increasing in t. This

IFR (Increasing Failure Rate) assumption can be validated
from the phenomenon called the software aging observed
in actual operating systems or midware systems. Consider
the similar but somewhat different sbftware rejuvenation
policies from Garg, et al. (1]:

Policy I: Rejuvenate the system at the time when N
(> 1) transactions are processed. If one or more
transactions are remained at that time in the buffer,

they will be all lost from the buffer.

Policy II: Rejuvenate the system at the beginning of the
idle period after the system completed IV (> 1) trans-

actions.

Only difference from Garg, et al. [1] is to start the software
rejuvenation preventively at the random time when the to-
tal number of transactions completed to process reaches to
a threshold level N. Let Yr be the preventive maintenance
time related with the rejuvenation and be the i.i.d. ran-
dom variable with E[Yr] = vr (> 0). After completing the
rejuvenation, the system is restarted with empty buffer.

3. Dependability Measures

Consider three dependability measures; steady-state
availability, loss probability of transactions and mean re-
sponse time on transactions. We also apply the similar
method based on the hidden Markov process to Garg, et
al. {1]. Consider a discrete Markov chain with three states,

where
State A: system operation
State B: recovery from software failure
State C: preventive maintenance (rejuvenation).

Define the transition probabilities Pap and Pac from state
A to state B and from state A to state C, where Pac =
1 — Pap. Then, since the transition probability matrics is

0 Pas Pac
P=11 0 0 ,
1 0 0

we obtain the steady-state probabilities in respective states
as T4 = 0.5, mg = 0.5P4p and nc = 0.5Pac. Also, define
the following random variables:



U: sojourn time in state A in the steady state

Un: sojourn time in state A when n (n = 0, - -, K) trans-
actions are stored in the buffer (U = X U,,)

n=0
Ni: number of transactions lost in the transition from
state A to state B or C

(i) Steady state availability:

E{U]
E[U] + Papv + Pacyr’

(1)

Ass =
(ii) Loss probability of transactions:

MPasy- + Pacyr + E|Uk]) + E[N/]

Poss =
¢ ME[U] + Pap¥r + Pacr)

(iii) Mean response time on transactions:

Let E and W, be the mean number of transactions ser-
viced from the system and the corresponding expected to-
tal processing time, respectively. Then, we obtain E =
ME[U] — E[Uk]). From an intuitive argument, the ex-
pected total processing time for all transactions arrived at
the system is W = Zf:o nE[Un]. Since W, < W, the
mean response time on transactions becomes
W 3)
E — E[N]

From the inequality W, < W, we obtain an upper bound
of the mean response time as follows.

w
E - E[N]’

Tres =

Tres < (4)

4. Analysis

Of our interest is the derivation of the optimal thresh-
old level N* under Policy I and Policy II. Hence, we de-
fine the steady-state availability and the loss probability of
transactions as the functions of N again, i.e. Ass(N) and
Pioss(IN). To seek Pap, E[U,] and E[N;] in these depend-
ability measures, define the number of transactions com-
pleted to process until time t, the probability that n trans-
actions are remained in the buffer at time t and the proba-
bility that i transactions are completed to process provided
that n transactions are remained in the buffer at time ¢, by
{Z:; 20}, ga(t) and ¢ () (i =1,---,N;n=0,---, K),
respectively. Since

gn(t) = Pr{X.=n}, (5)
gd?(t) = Pr{Z =ilX.=n}, (6)

=1,---,N;n=0,---, K),
the joint probability of X; and Z, is represented by
pP@t) = Pr{N,=n,Z =i}
= an(t)¢(2). (7

Under Policy I, we consider a continuous-time Markov
chain (CTMC) with states

@)

09,... K®: § (4 =0,---,N — 1) transactions are com-
pleted, where 0 ~ K means the number of transac-
tions in the buffer,

o ),---,K (M), after N transactions are completed to
process, the system is started to rejuvenate (absorb-
ing states),

0’,---,K': the software failure occurs (absorbing states).

Applying the well-known state-space method, we can for-
mulate the Kolmogorov’s forward equation which is the
difference-differential equations on p*’ (t) and pn(t). Fi-
nally, under Policy I, we derive

L
Pap = an/(oo), (8)
Bl = [ 3 #oa, ©
EIN = ) n(pw(00) + 5 (c0)). (10)

In a fashion similar to Policy I, we get the results for Policy

II as follows.

Psp =

> pwr(00), (1)
n=0

E[Uo] = / mz_:pf,i)(t)dt, (12)

o N
E[U.] = / Zpﬁf’(t)dt, (n=1,---,K) (13)
0 =0
_ K
EU] = ) npu (o). (14)
n=0
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