1—B—10

0IEERAA RL—a YR o ¥ —FEL
BFWRRERE

Bk SR~ DEHIKI Y WV N—DHE

Solving Dispatching Problems with Constraint -based meta-heuristics
03000500 7407 (#k) #94 7zb7Y —ILOG Japan Co., Katai Ferenc

1. Imtroductiom

Dispatching problems are generally considered
difficult to solve, due to their combinatorial nature.
It is especially true for industrial problems, where
many side constraints exist, such as vehicle breaks,
parking-lot capacity, possibility to split or group
orders, etc. In the literature there are several attempt
to use evolutionary algorithm, such as GA (Potvin
et al[3], simulated annealing (Thangiah et al[5]),
tabu search (Taillard et al[4], deBacker et al[1]), etc
and hybrid approaches (Chiang et al[2], Thangiah et
al[5]). In the present paper we introduce a 2-phase
approach, using a combination of constraint
programming (CP) and (meta)-heuristics (local/tabu
searche). The algorithms and framework has been
implemented in ILOG Dispatcher C++ library (an
add-on of ILOG Solver (CP) library) together with
a modeling layer called ILOG Concert technology.
Though, we focus on benchmark examples,
industrial scale applications implemented with
ILOG Dispatcher are numerous in the domain of
truck, technician dispatching, pick-up and/or
delivery problems, etc. either in standalone fashion,
or part of ISVs’ (independent software vendor)
packages.

2. The Dispatcher model — solving method
Assolution for a dispatching problem means, of each
truck is decided if it is used, and visits are assigned
to used trucks in appropriate order (respecting
various constraints). The method comprises of 2
steps. A first solution (by any standard) constructed
using different heuristics by choice — in Figure 1 the
result of the so-called sweep heuristics can be seen.
After generating the first solution, in the next phase
the solution is improved by either (improve)
heuristics (move is accepted, when it strictly
reduces the cost) or meta-heuristics, such as
tabu-search (TS) and guided local search (GLS)
(solutions can be degraded, that is, move can be
accepted even if it doesn’t reduce the cost)). In fact,
providing move operators, such as 2opt, or-opt,
exchange, etc, the user can build his own
custom-made heuristics, or meta-heuristics. During
the moves, the CP engine is propagating the
changes to verify if the move is feasible. If the
move is not feasible the result of the move is
discarded and other moves are explored. Heuristics
can’t provide the proof of optimality, so the
stopping criteria either limiting searching time
and/or the number of accepted moves.

3. Problems and constraints
ILOG Dispatcher has many built-in constraints,
such as expressing: first and/or last visit to depot(s)

or customer site(s) by a vehicle; truck’s capacity
(compartments-dimensions), speed and time
window constraint of availability; time windows of
depot use; alternative sites and time windows for a
visit; vehicle break (effectively driver’s break); max
and min running time of vehicle; on-route pick-up
and delivery; multiply depots; loading/unloading
fixed and unit time; vehicie speed, compatibility
constraints; precedence of visits etc. Besides, based
on the underlying CP engine and the provided
variable objects, such as: transition, travel and
cumulative variables between visits for time,
distance and capacity; waiting time and delay
variable; variable of next and previous visits etc.
many custom constraints could be expressed, such
as: allowing-disallowing splitting orders (10kg
banana + 101 milk is delivered by the same truck or
by different trucks); area related constraints;
parking-lot capacity etc.

4. Bechmark results

Tests were conducted on several different
benchmark problems of Solomon[4]. Some of the
results by guidedTS (GTS) and fastGLC (fGLS)
can be seen in Table 1. These problems have in
general, 100 wvisits, a central depot, capacity
constraints, time windows on the time of delivery,
and a total route time constraint. The objective was
to minimize traveled distance, meanwhile keeping
the number of trucks as low as possible. A site has x,
y coordinates, and the distance is computed by
Euclidean distance. After generating the first
solution, the improve-heuristics was used up to the
local minimum. Then GTS and fGLS were used for
meta-heuristics. The results were obtained with a
300s time limit and 3000 accepted moves, on a
fairly slow computer (200MHz Pentium (bus-speed
66Mhz)). A gives the ratio of our result and the best

one (found so far in the literature) in %. An asterisk
means that a solution with the minimum number of
vehicles was not found during the time elapsed. In
Figure 2 and 3 the shape of the routes of C101 and
C201 can be seen, respectively.

5. Conclusion

One could exploit more specific data or constraints
of the problem at hand to design problem-specific
algorithms for dispatching problems. However, the
2-phase, 2-technology approach proved to be robust
and fast. Meanwhile, there is plenty of room for
improvement, the quality of solutions is more than
promising when the user wants to turn to industry
size problems. Reasoning on the constraints, that is,
improving the underlying CP engine is necessary.
Also a key demand is to enable the use of capacity
resources at the site (warehouse) of a visit, enabling
safety-level, max capacity, etc. constraints.



Fig. 1 First solution with sweep heuristics

Problem  GTS A% fGLS A(%)
C101 828.94 0.00 828.94 0.00
C102  832.48 031 829.26 0.04
C103 82899  0.00 828.07 0.00
C104 825.87 0.00 824.78 0.00
C105 82894  0.00 828.94  0.00
C106 82894  0.00 828.94  0.00
C107 82894  0.00 * *
C108 82894  0.00 828.94  0.00
C109 82894  0.00 828.94  0.00
C201 591.56 0.00 591.56 0.00
C202 59156  0.00 591.56  0.00
C203 591.56 0.06 609.12 3.04
C204 599.76 1.55 720.58 20.79
C205  588.88 0.00 588.88 0.00
C206  588.88 0.07 588.49 0.00
C207  588.88 0.10 588.27 0.00
C208  588.88 0.09 588.32 0.00

Table 1. Results for some Solomon problems

At the moment though it is possible, using the
reservoir rtesource object of ILOG Scheduler
(another add-on to ILOG Solver for solving
scheduling problems), it is desirable to move this
concept into the dispatching framework reducing
the necessity to duplicate modeling objects,
consequently reducing memory usage and increase
performance and to ease modeling

References

[1] B. de Backer, V. Furnon, P. Kilby, P. Prosser,
and P. Shaw: “Solving Vehicle Routing
Problems using Constraint Programming and
Metaheuristics”, Journal of Heuristics, Volume
No., 1-21 (1997)

[2] W.C. Chiang and R.A. Russell: “Hybrid
heuristics for the vehicle routing problem with
time windows”, Department of Quantitative
Methods, University of Tulsa, Tulsa, OK (1993)

[3] J.-Y. Potvin, S. Bengio: “The vehicle routing
problem with time windows - part ii: Genetic

search”, INFORMS Journal on Computing,
8:165-172 (1996)

[4] M. M. Solomon: “Algorithms for the vehicle
routing and scheduling problem with time
window constraints”, Operations Research,
35:254-265 (1987)

[4] E. Taillard, P. Badeau, M. Gendreau, F.
Guertain, and J.-Y. Potvin: “A tabu search
heuristic for the vehicle routing problem with
soft time windows”, Transportation Science,
32(2) (1997)

[5] S. R. Thangiah, I. H. Osman, and T. Sun:
“Hybrid genetic algorithm, simulated annealing,
and tabu search methods for vehicle routing
problems with time windows”, Working paper
UKC/OR94/4, Institute of Mathematics and
Statistics, University of Kent, Canterbury
(1994)

[6] ILOG Dispatcher3.0, User’s Manual, Copyright
© 2000 ILOG, http://www.ilog.com

[7] ILOG Solver5.0, User’s Manual, , Copyright ©

2000 ILOG http://www.ilog.com

"
a8

Fig. 2 Solution of C101 with cost 828.94

Cost: 5158

Fig. 3 Solution of C201 with cost 591.56





