A Correlated Markov Chain Model and Its Application to Risk Management

01106850 東京都立大学 木島 正明 KIJIMA Masaaki 興銀第一FT 小守林 克哉 KOMORIBAYASHI Katsuya 興銀第一FT *鈴木 英資 SUZUKI Eisuke

1 The model

We consider a set of Markov chains $\{X_t^k, t=0,1,2,\cdots\}$, $k=1,2,\cdots,n$, each defined on the state space $\mathcal{S}=\{1,2,\cdots,K,K+1\}$, where $1< K<\infty$. The Markov chain $\{X_t^k\}$ may represent the dynamics of a credit rating of firm k. In this case, state 1 represents the highest credit class, state 2 the second highest, \cdots , state K the lowest credit class, and state K+1 designates default. While state 1 is a retaining boundary, it is usually assumed for simplicity that the default state K+1 is absorbing.

In our model, the dynamics of $\{X_t^k\}$ is assumed to follow

$$X_{t+1}^{k} = \begin{cases} \xi \left(X_{t}^{k} + Z_{t+1}^{k} + (-1)^{\delta_{k}} B_{t+1}^{k} Y_{t+1} \right), \\ X_{t}^{k} \neq K+1, \\ X_{t}^{k}, \\ X_{t}^{k} = K+1, \end{cases}$$

$$(1)$$

where δ_k is either 0 or 1, B_t^k are independent, identically distributed (IID) Bernoulli random variables with parameter α_k , i.e.

$$P\{B_t^k = 1\} = 1 - P\{B_t^k = 0\} = \alpha_k \qquad (2)$$

for some $0 \le \alpha_k \le 1$, Y_t are integer-valued IID random variables with mean 0, and Z_{t+1}^k denotes the increment dependent on X_t^k , i.e.

$$P\{Z_{t+1}^{k} = j - i | X_{t}^{k} = i\} = q_{ij}^{k}$$
 (3)

for $i, j \in S$. The function $\xi(x)$ determines the boundary conditions so that

$$\xi(x) = \begin{cases} 1, & x \le 1, \\ x, & 1 < x \le K, \\ K+1, & x \ge K+1. \end{cases}$$
 (4)

The kth set of random variables $\{B_t^k\}$ and $\{Z_t^k\}$ is independent of $\{Y_t\}$ and the other processes. Hence, the Markov chains $\{X_t^k\}$ are correlated only through the process $\{Y_t\}$ which is the common factor to all the Markov chains. Note that, when $B_t^k = 0$ with probability 1 for all t and k, the processes $\{X_t^k\}$ constitute independent, time-homogeneous Markov chains each with one-step transition probabilities q_{ij}^k .

The model (1) can be seen as follows. Suppose that $X_t^k \neq K+1$ and that $X_{t+1}^k \neq 1, K+1$. Then, from (1) and (4), the increment of the Markov chain $\{X_t^k\}$ is given by

$$X_{t+1}^{k} - X_{t}^{k} = (-1)^{\delta_{k}} B_{t+1}^{k} Y_{t+1} + Z_{t+1}^{k}.$$
 (5)

Hence, the common random variable Y_{t+1} is considered to represent a systematic risk, while Z_{t+1}^k is a specific risk of firm k. The factor $(-1)^{\delta_k}B_{t+1}^k$ corresponds to the " β " in the CAPM. It also concerns with the correlation coefficient between the Markov chains. To see this, define

$$c_{k\ell}^n = \text{Cov}(X_{t+1}^k - X_t^k, X_{t+1}^\ell - X_t^\ell),$$

where Cov denotes the covariance operator. For simplicity, assume that (5) holds true. It then follows from (1) and the imposed independent assumptions that

$$c_{k\ell}^n = (-1)^{\delta_k + \delta_\ell} \alpha_k \alpha_\ell V[Y_{t+1}],$$

where $V[Y_t]$ is the variance of Y_t . Also, since $E[Y_{t+1}] = 0$ by our assumption, we obtain

$$V[X_{t+1}^k - X_t^k] = V[Z_{t+1}^k] + \alpha_k V[Y_{t+1}].$$

It follows that the correlation coefficient between the increments of the Markov chains is given by

$$\ell_{k\ell} = \lambda_k \lambda_\ell, \qquad k, \, \ell = 1, 2, \cdots, n, \qquad (6)$$

where

$$\lambda_{k}=(-1)^{\delta_{k}}\sqrt{\alpha_{k}},$$

provided that $V[Z_{t+1}^k]$ are negligible.

In the following, we assume that the correlation coefficient between the increments of the Markov chains is given by (6).

2 Observed probabilities

For the Markov chain $\{X_t^k\}$, let

$$p_{ij}^{k} = P\{X_{t+1}^{k} = j | X_{t}^{k} = i\}, \quad i, j \in \mathcal{S},$$

and suppose that

$$P\{Y_t = i\} = r_i, \quad i = 0, \pm 1, \pm 2, \cdots.$$
 (7)

We note that the distribution (7) must satisfy the condition $E[Y_t] = 0$. Also, the transition probabilities p_{ij}^k determine a marginal conditional distribution in the sense that they do not determine the *joint* distribution of $(X_t^1, X_t^2, \dots, X_t^n)$.

Suppose $X_t^k \neq K+1$ and suppose first that $X_{t+1}^k \neq 1, K+1$. Then, from (1) and the law of total probability, we obtain

$$p_{ij}^{k} = (1 - \alpha_k)q_{ij}^{k} + \alpha_k \sum_{m \in \mathcal{S}} q_{im}^{k} r_{j-m} \qquad (8)$$

where $j \neq 1, K + 1$. Next, for j = 1, we have

$$p_{i1}^{k} = (1 - \alpha_{k})q_{i1}^{k} + \alpha_{k} \sum_{m \in S} q_{im}^{k} R_{1-m}, \quad (9)$$

whereas for j = K + 1

$$p_{i,K+1}^{k} = (1 - \alpha_k)q_{i,K+1}^{k} + \alpha_k \sum_{m \in \mathcal{S}} q_{im}^{k} \overline{R}_{K+1-m},$$
(10)

where $R_i = \sum_{k \le i} r_k$ and $\overline{R}_i = \sum_{k \ge i} r_k$.

Denote the transition matrix of $\{X_t^k\}$ by $P_k =$

$$\mathbf{R} = \begin{pmatrix} R_0 & r_1 & r_2 & \cdots & \overline{R}_K \\ R_{-1} & r_0 & r_1 & \cdots & \overline{R}_{K-1} \\ R_{-2} & r_{-1} & r_0 & \cdots & \overline{R}_{K-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ R_{-K} & r_{-K+1} & r_{-K+2} & \cdots & \overline{R}_0 \end{pmatrix}.$$
(11)

It follows from (8) - (10) that

$$\mathbf{P}_{k} = \mathbf{Q}_{k} ((1 - \alpha_{k})\mathbf{I} + \alpha_{k}\mathbf{R}), \qquad (12)$$

where I denotes the identity matrix of order K+1. It should be noted that the transition matrix P_k is observable in the market. The α_k can also be obtained from the market data through (6). Assuming that the systematic risk (r_i) can be determined by some means, we need to recover the data Q_k from (12). That is, if the matrix

$$\tilde{\mathbf{R}} = (1 - \alpha_k)\mathbf{I} + \alpha_k \mathbf{R} \tag{13}$$

is convertible, the unknown matrix can be calculated by

$$\mathbf{Q}_k = \mathbf{P}_k \tilde{\mathbf{R}}^{-1}.$$

Especially, in the simplest case that

$$P\{Y_t = 1\} = P\{Y_t = -1\} = r, \quad P\{Y_t = 0\} = 1 - 2r$$
(14)

for some $0 < r \le 1/2$, the matrix in (11) becomes the tri-diagonal matrix

probability, we obtain
$$p_{ij}^k = (1 - \alpha_k)q_{ij}^k + \alpha_k \sum_{m \in \mathcal{S}} q_{im}^k r_{j-m} \qquad (8) \qquad \mathbf{R} = \begin{pmatrix} 1 - r & r & 0 & \cdots & 0 \\ r & 1 - 2r & r & \cdots & 0 \\ 0 & r & 1 - 2r & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 - r \end{pmatrix},$$

which is convertible.