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1 Introduction

For a vanilla European option, the payoff at
exercise can be determined by the spot price
of the underlying asset, independently on its
past history in the trading interval. The so-
called ezotic or path-dependent options have
values that depend on the history of the asset
price in some non-trivial way. Among various
exotic options, we focus on a knockout option
with an incomplete boundary in this paper.

Knockout options are contingent claims
whose right to exercise is nullified when the
undelying asset value crosses a certain value.
The set of those values over the trading inter-
val is called a knockout boundary. Knockout
options are classified as either up-and-out or
down-and-out options by the relative position
between initial values of the asset price and
the knockout boundary. Of course, they are
classified into two basic types, i.e., call or put.
Hence, there are totally four different types in
knockout options.

All of previous results of knockout options
(e.g., [3, 4]) are based on a common assump-
tion that the knockout boundary exists in the
whole trading interval from initial time to ma-
turity. In this paper, however, we consider
an incomplete knockout boundary that exists
only in a certain part of the trading inter-
val. In other words, there is a toggled switch
in the knockout boundary; this option is e-
quivalent to a vanilla or an ordinary knock-
out option according as the switch is off or
on. Hence, we call it a switched knockout op-
tion in this paper. Obviously, the vanilla and
ordinary knockout options are special cases of
our switched knockout option.

Due to the page restriction, we are only
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concerned with the analysis of the up-and-out
call type and we omit all figures in Section 3;
see Hanada and Kimura [2] for details.

2 Mathematical Formulation

We use the same assumptions as those in the
Black-Scholes model [1] except for knockout
boundaries: Assume that the capital mar-
ket is well-defined and follows the efficien-
t market hypothesis. Let S(¢) denote the
underlying asset price at time ¢ and let T
(> 0) be the maturity. Then, the process
{S(t); 0 <t < T} satisfies the stochastic d-
ifferential equation
dS(t)

— = pdt + odW (t),

0 0<t<T, (1)

where p (o) is the drift (volatility) of the pro-
cess S(-) and r is the risk-free interest rate, all
of which are assumed to be positive constants.
In (1), {W(t); 0 <t < T} is the standard
Brownian motion process. Also, assume that
the option price written on S(t), say V, is a
function of S(t) and ¢, i.e., V = V(S(¢t), t) for
S(t) > 0and 0 < ¢t < T. From these assump-
tions and Itd’s lemma, we have the partial
differential equation [1]
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For a vanilla call option with the exercise
price K (> 0), the option price V satisfies the
terminate condition

V(S(T),T) = max(S(T) — K, 0), (3)



together with the boundary conditions

V(1)

fll,rf}o £— KeT@-0 1, (4)
lim V' (£, ) = 0. (5)
£—-0

For a switched knockout option, however,
these boundary conditions should be modi-
fied as follows: Let Z,, be the set of time
intervals where the nullified switch is on, and
let Zog = [0, T)\Zou- Let B(t) be the value
of knockout boundary at time ¢ and assume
that B(t) > 0 for t € [0, T]. Then, for the
up-and-out call type, the boundary condition-
s should be

V(£ t)

ey N
VED =0, (6 € [B(),00) x T, 0

i = <t<T.
mV(Et) =0, 0<t<T

3 General Properties

Figures 1 and 2 illustrate the curves of the
up-and-out call price V(S(0),0) as a func-
tion of S(0) for several knockout boundaries,
where the intervals Z,, = 0 (i.e. empty set)
and Z,, = [0, 1] are added for comparison-
s, which represent the vanilla and ordinary
knockout options, respectively. Clearly, the
prices of these extreme cases give upper and

lower bounds for V of the switched knockout

options. In Figure 1, the knockout bound-
aries exist in latter parts of the trading in-
terval, whereas in Figure 2 they exist in for-
mer parts. From these figures, we see that
there are significant differences between these
two cases: The option prices for the former-
part cases are higher and more sensitive to
the length of Z,, than those for the latter-
part cases. No doubt, this result is due to
the assumption that the process S(-) follows
a geometric Brownian motion with continu-
ous sample paths. In actual markets, it is
reasonable to place a knockout boundary at a
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latter part of the trading interval for hedging

risk in future. In this sense, switched knock-
out options with latter-part boundaries can
be attractive alternatives to the vanilla op-
tion. Another marked difference is the value
of each option price when S(0) > B = 180.
That is, the option prices for the latter-part
cases have positive values, while those for the
former-part cases are always 0.

To see the effects of volatility to option
prices, we compute the prices of switched
knockout options with o = 0.2,0.3,0.4. Fig-
ures 3 and 4 illustrate the curves of V' (5(0), 0)
as a function S(0) when Z,, = [0.5,1]
and Z,, = [0,0.5], respectively. For the
vanilla option, it is well known that the
price is monotonously increasing with o, i.e.,
0V/0o > 0 for all & > 0. However, we
see from Figures 3 and 4 that this property
does not hold for switched knockout options:
Roughly speaking, for all ¢ > 0, 8V/8c > 0
when S(0) << K and 9V/do < 0 when
S(0) >> K. This result indicates that a new
scheme for risk hedging should be invented
for switched knockout options.
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