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A Combinatorial Problem Arising from Polyhedral Homotopies
for Solving Polynomial Systems
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1 Introduction
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Homotopy continuation is used to find the full set
of isolated zeros of a polynomial system numer-
ically. During the last two decades, this method
has been developed into a reliable and efficient
numerical algorithm for approximating all iso-
lated zeros of polynomial systems.

Let P(xz) = 0 be a system of n polynomial
equations in n unknowns. Denoting P = (p;,...,ps),

P(z) =

Forlthg jgh term of the ith equation (say,
dz{ z§ 5 ), we define ¢;; = (c!,c?, ¢?). That is,

cn = (1a21 1)7‘312 = (3-: 0,1),613 = (0:2’ 4),

we want to find all isolated solutions & = (z1,...,z,) cn = (2,4,0),¢22 = (0,2,2) 2: z ((% g’ (())))’
of | ca1 = (3,0,0), 32 = (1,2,0), ¢33 = (0,0, 0).

pl(l‘l, e ,.’En) =0
: (1) Let S; = {1,...,m;} fori = 1,2,...,n, and in
the above case, n = 3, m; =4, my = 3, m3 =
3. Given real numbers w;;(i = 1,2,...,n, Vj €
S;) chosen generically, we consider the system of
linear inequalities:

Pn(xlv v ;xn) =0.
The classical homotopy continuation method for
solving (1) is to define a trivial system Q(z) =
(q1(),-..,gn(z)) and then follow the curves in
the real variable ¢ which make up the solution Bi ~ (cijy @) < wij

set of (i=1,2,...,n, Vj € S)), 2)

0=H(z,t) = (1-1)Q(z) + tP(z). -where a, 8 € R", and formulate our problem as

A typical choice of the start system Q(z) gen-
erates tremendously many initial points for so-
lutions of the original problem P(z) = 0. How-
ever, in the last few years, a new technique for
constructing Q(z) has emerged, which provides
a much tighter bound for the number of isolated
zeros of P(xz). The so called polyhedral homo-
topy is then established for the new method and
the homotopy paths so produced is much fewer.
According to the recent article [2], we describe
a problem involved in the construction of a new
polynomial system Q(z).

Problem 2.1 Find all (o, 8) which satisfies (2)
with exactly two equalities foreach: = 1,2,...,n.

By solving Problem 2.1, we can construct a start
system Q(x) whose ¢;(z), i = 1,2,...,n consists
of exactly two terms. We can algebraically solve
such a system of polynomial equations (see [1]).

3 Transformation

Define b; € R (i = 1,2,...,n) and d € R™ arbi-
trarily, and consider the linear program:

2 Formulation P: max ib,ﬂ,’+(d,0z)

Let us look at the following example of a system s.t.

of polynomial equations:

=1
Bi — (cij, @) < wij
(=1,2,...,n, Vj€S).



Note that the set of constraint linear inequali-
ties in P coincides with the system (2) of linear
inequalities.

Let

F = {F=(F,F,...,F) :
FicSi, 4F;<2(i=1,2,...,n)}

For each F = (Fy, Fs,.. ..,Fn) € F, we consider
a subproblem P(F') of P:

P(F): max Y bfi+(d,a)
. i=1
st. B = (e, ) < wijy
;Bi - <c‘ij27 a) = Wij,
(t=1,2,...,m,
Vi€ S;\F,, Vj: € F).

Define F* as

CHF=2G=1,2,...,n),
{FGF " P(F) is feasible )

Thus, finding all solutions of Problem 2.1 has
been reduced to computing optimal solutions of
P(F) for all F € F*.

In order to enumerate all P(F) (F € F*), we
introduce a tree structure into the subproblems
{P(F) : F € F}. For every £k =0,1,2,...,n,
define F* =

{Fe}”: 4, =2 (i=12...,k), }

iF;=0(i=k+1,k+2,...,n)

Now we regard each subproblem P(F) (F € F¥)
as a node at the kth level of the tree which we
construct. A node P(F”) at the (k + 1)th level
is a child node of a node P(F') at the kth level
if and only if Fj = F; (j = 1,2,...,k). We now
apply the depth-first search to the tree. If a node
- P(F) at the kth level of the tree is infeasible,
then all of its descendants are infeasible. Hence
we terminate the node P(F') at the kth level in
this case. For practical computational efficiency,
we will propose to deal with the duals D(F) of
P(F) (F € F).

4 Implementation

We consider all possible distinct pairs {p, q} of
S; with 1 < p < ¢ < m; and arrange them in the

lexicographical order, i.e.,

L(S:) = {{1a2}1 {1’3}1 AR {mi - 11mi}}1

where 1,2,...,m; € S;. For every F; = {p,q} in
the list L(S;), we define succ(F;; L(S;)) =

@ if F; is the last element in the list L(S;),
the element succeeding to F; in the list L(S;)
otherwise,

and let succ(@; L(S;)) = the first element in the -
list L(S;).

Algorithm 4.1 : _
Let F = (0,0,...,0) € 7°, S, =

Step 0:
Si(i=12,...,n)and k = 1.
Step 1: If k = 0 then terminate. OtherWise,
let
F, . f1<i<k~1,
F; = succ(Fy,L(Sk)) ifi=k,
0 ifk+1<i<n.

Step 2: If Fy =0, thenlet Sx = Si, k =k — 1
and go to Step 1. Otherwise, go to Step 3.

Step 3: Solve D(F') to compute a basic op-
timal solution or detect the unbounded-
ness of D(F). If D(F) is unbounded, go
to Step 1. Otherwise, go to Step 4.

Step 41 If k = n, then output the optimal
solution of P(F). Otherwise let k = k + 1.
Go to Step 1.

5 Numerical Results

In this talk, we also present our numerical results
on the widely considered benchmark system.
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