A Generalized Optimum Requirement Spanning Tree Problem with a Monge-like Property

01013281 札幌大学 穴沢 務 ANAZAWA Tsutomu

1 Introduction

We begin by introducing the optimum requirement spanning tree problem (ORST problem) studied by Hu [5], which has motivated our studies. Let $V = \{0, 1, \ldots, n-1\}$ be a set of n vertices, $\binom{V}{2}$ the set of all pairs of distinct vertices in V, and \mathcal{T} the whole set of undirected spanning trees on V. A tree $T \in \mathcal{T}$ with an edge set $E = \{(v,u)|v,u \in V\}$ is denoted by T = (V,E) conventionally. Assume that a nonnegative value r_{vu} is given to each $\{v,u\} \in \binom{V}{2}$, where $r_{vu} = r_{uv}$ holds. Hu [5] defined an ORST to be a tree $T \in \mathcal{T}$ which minimizes $f(T) = \sum_{\{v,u\} \in \binom{V}{2}\}} d(v,u;T)r_{vu}$, where d(v,u;T) is the length of the path between v and u on T. He showed that a tree minimizing f is obtained by the Gomory-Hu algorithm [4] when degrees of vertices are not restricted. ORST problem has been extend by Anazawa et al. [2, 3] and Anazawa [1] in different manners. The aim of this paper is to generalize the problem and results discussed in the literature. For generalization, we define a dummy vertex as a vertex whose number is greater than n-1, and assme that $r_{vu} = 0$ holds if v = v is dummy. Here we consider the problem to find a tree $T \in \mathcal{T}$ minimizes a function $f_g(T) = \sum_{\{v,u\} \in \binom{V}{2}\}} g(d(v,u;T))r_{vu}$ under constraint that $\deg(v) \leq l_v$ holds for all $v \in V$ (called maximum degree constraint), where g(x) be an arbitrary real-valued function of real variable x such that it is strictly increasing on [0,n-1), and l_v is given to each vertex $v \in V$. We call this problem a generalized optimum requirement spanning tree problem (GORST problem), and a solution to this problem an f_g -optimum tree. Our main assertion on GORST problem in this paper is the following:

Main Theorem Suppose that $l_0 \ge l_1 \ge \cdots \ge l_{n-1}$ and $\sum_{v=0}^{n-1} l_v \ge 2(n-1)$ hold. If $\{r_{vu}\}$ satisfies $r_{vu} + r_{v'u'} \ge r_{vu'} + r_{v'u}$ for all 4-tuple $\{v, v', u, u'\}$ $\{v < v', u < u'\}$ such that r_{vu} , $r_{v'u'}$, $r_{vu'}$ and $r_{v'u}$ are all defined (called Monge-like property), then T^* defined below is f_g -optimum.

Definition of T^* : We set $s_{-1} = 0$, $s_0 = l_0$, $s_u = s_{u-1} + (l_u - 1)$ (u = 1, 2, ...) and let N be the minimum integer satisfying $n - 1 \le s_{N-1}$; also we define a function π on a set $\{1, 2, ..., n-1\}$ by

$$\pi(v) = \begin{cases} u & \text{if } s_{u-1} + 1 \le v \le s_u & \text{for } u = 0, 1, 2, \dots, N-2 \\ N-1 & \text{if } s_{N-2} + 1 \le v \le n-1 \end{cases}$$

and let $E^* = \{e_1, e_2, \dots, e_{n-1}\}$, where $e_v = (\pi(v), v)$ $(v = 1, 2, \dots, n-1)$. Then we obtain $T^* = (V, E^*)$.

As the name indecated, Monge-like property is closely related to the Monge property, which is originally discussed in the classical Hitchcock transportation problem, and is known to make some NP-hard problems efficiently solvable (see [6]).

2 Preliminaries and lemmas

For a graph G = (V, E) and a subset $U \subset V$, a subgraph $G \cap U$ is defined by a forest G' = (U, E'), where $E' = \{(v, u) \in E | v, u \in U\}$; while a subgraph $G \setminus U$ is defined by a forest $G'' = (V \setminus U, E'')$, where $E'' = \{(v, u) \in E | v, u \in V \setminus U\}$. For a rooted tree $T = (V, E) \in \mathcal{T}$ and a vertex $v \in V$, let $\chi(v) = \{u | v \text{ is the parent of } u\}$. For a path $P = (u_1, u_2, \ldots, u_k)$ of a tree $T = (V, E) \in \mathcal{T}$, let F be a forest defined by $F = (V, E \setminus \{(u_1, u_2), (u_2, u_3), \ldots, (u_{k-1}, u_k)\})$, and $T(u_i) = (V(u_i), E(u_i))$ ($i = 1, \ldots, k$) the connected components each of which contains u_i . We regard u_i as the root of $T(u_i)$ in the sequel. An edge (v, u) such that v or u is a dummy vertex is called a dummy edge. For a tree T = (V, E), we will sometimes construct another tree $\tilde{T} = (\tilde{V}, \tilde{E})$ satisfying $\tilde{T} \setminus \{\text{dummy vertices}\} = T$. Then it is obvious that $f_g(\tilde{T}) = f_g(T)$ holds. Suppose that a tree $T = (V, E) \in \mathcal{T}$ satisfies the maximum degree constraint and a path $P = (u_1, \ldots, u_k)$ (k = 2 or 3) of T is given. Then we construct $\tilde{T} = (\tilde{V}, \tilde{E})$ by adding dummy vertices and edges to T, and simultaneously introduce an isomorphism σ_P as follows: Let us construct $\tilde{T}(u_i) = (\tilde{V}(u_i), \tilde{E}(u_i))$ (i = 1, k) by adding dummy

vertices and edges to $T(u_i) = (V(u_i), E(u_i))$ (i = 1, k) defined for P so that we can define an isomorphism $\sigma_P : \tilde{V}(u_1) \to \tilde{V}(u_k)$ satisfying (i) $\sigma_P(u_1) = u_k$, (ii) $(\sigma_P(w), \sigma_P(w')) \in \tilde{E}(u_k)$ if and only if $(w, w') \in \tilde{E}(u_1)$, and (iii) for any $v \in \tilde{V}(u_1)$, $|\chi(v)| = |N|$ or $|\chi(\sigma_P(v))| = |N'|$ holds where $N = \{w \in \chi(v) | w \le n - 1\}$ and $N' = \{w' \in \chi(\sigma_P(v)) | w' \le n - 1\}$. We call such an isomorphism σ_P a forced isomorphism for P. Also for \tilde{T} and σ_P defined above, we consider the following transformation of \tilde{T} which may reduce the f_g value: Let $V_C = \{v \in \tilde{V}(u_1) | v > \sigma_P(v)\}$, and exchange v and $\sigma_P(v)$ for all $v \in V_C$. We call such a transformation biasing with respect to σ_P . Further let \tilde{T}' be a tree obtained from \tilde{T} by biasing and $T' = \tilde{T}' \setminus \{\text{dummy vertices}\}$.

Lemma 1 T' is also a tree belonging to T and satisfies the maximum degree constraint.

Lemma 2 If $\{r_{vu}\}$ satisfies Monge-like property, then $f_g(T') \leq f_g(T)$ holds.

Here we show some properties of the tree $T^* = (V, E^*)$ satisfying $l_0 \ge l_1 \ge \cdots \ge l_{n-1}$. Let $T^*_{\nu} = T^* \cap \{0, 1, \ldots, \nu - 1\}$ $(\nu = 1, 2, \ldots, n)$ be subtrees of the tree T^* .

Lemma 3 For each T_{ν}^* ($\nu \geq 2$), let $P = (u_1, u_2, \ldots, u_k)$ be an arbitrary path of T_{ν}^* satisfying $u_1 < u_k$, and let $m = \lfloor \frac{k}{2} \rfloor$ where $\lfloor x \rfloor$ is the maximum integer not exceeding x. Then $u_i < u_{k-i+1}$ and $\deg(u_i) \geq \deg(u_{k-i+1})$ hold for $i = 1, 2, \ldots, m$.

Lemma 4 Let T be a tree containing a subtree T_{ν}^* (that is, $T \cap \{0, 1, \ldots, \nu - 1\} = T_{\nu}^*$), and $P = (u_1, \ldots, u_k)$ (k = 2 or 3) an arbitrary path of T. For the tree T and the path P, let \tilde{T} be a dummies-added tree on which a forced isomorphism σ_P is defined, \tilde{T}' a tree obtained from \tilde{T} by biasing with respect to σ_P , and $T' = \tilde{T}' \setminus \{dummy \ vertices\}$. Then T' also contains T_{ν}^* .

3 Proof of Main Theorem (Outline)

Let $T^* \in \mathcal{T}$ be the tree stated in Main Theorem, and \mathcal{T}_{opt} the set of f_g -optimum trees. By using Lemmas 2 and 4, we can show that T^* must belong to \mathcal{T}_{opt} .

4 Application

Let vertices be regarded as network hosts, edges as network cables, and $\{r_{vu}\}$ as relative frequencies of communication. Also let p(T;k) denote the probability that a request of communication is not realized on a tree network T=(V,E) with k failures. Under some conditions, p(T;k) is expressed by $\sum_{\{v,u\}\in\binom{V}{2}}g(d(v,u;T))r_{vu}$ where

$$g(x) = 1 - \sum_{i+j=k} \frac{\binom{n-1-x}{i} \binom{n-1-x}{j}}{\binom{n}{i} \binom{n-1}{j}} \alpha_{ij}$$

and $\alpha_{ij} = \Pr\{i \text{ vertices and } j \text{ edges are broken down} | i + j \text{ failures have occured} \}$. Noting that g(x) is strictly increasing on [0, n-1), We find that T^* defined above minimizes p(T; k) for any k $(0 < k \le 2n-1)$ if $\{r_{vu}\}$ satisfies Monge-like property.

References

- [1] T. Anazawa, On a Condition for Obtaining an Explicit Solution of Optimum Requirement Spanning Tree. submitted to Networks.
- [2] T. Anazawa, T. Kodera and M. Jimbo, An Explicit Solution of Optimum Requirement Spanning Tree with Maximum Degree Conditions, *Congressus Numerantium*, **117** (1996) 43-52.
- [3] -----, Optimum Requirement Spanning Trees and Reliability of Tree Networks, submitted to Networks.
- [4] R. E. Gomory and T. C. Hu, Multi-terminal network flows, SIAM J. Appl. Math., 9 (1961) 551-570.
- [5] T. C. Hu, Optimum Communication Spanning Trees, SIAM J. Comput., 3 (1974) 188-195.
- [6] U. Pferschy, R. Rudolf and G. J. Woeginger, Monge Matrices Make Maximization Manegable, Operations Research Letters, 16 (1994) 245-254.