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1 Introduction

Serial Correlation(SC) is a common feature in re-
gression analysis for time-series data set. The pur-
pose of this article is to explore mathematical prop-
erties of Least Absolute Value Estimation (LAVE)-
SC, including its formulation, algorithm, multiple
solutions, and global optimality, where SC is ex-
pressed by a first-order autocorrelated disturbance.

Research rationale supporting the development
of LAVE-SC is suggested by the fact that Lo-
based time series analysis is seriously influenced by
the existence of an outlier and/or non-normal er-
ror distributions. This research is fully aware of
the existence of a few previous studies [3]. For
example, Weiss (1990) has investigated LAVE-SC
from the perspective of its statistical properties,
while Sueyoshi and Sekitani [1] propose a numer-
ical (computer-intensive) approach for LAVE-SC.
Unfortunately, the two research efforts do not pay
serious attention to analytical features related to
the LAVE-SC. Therefore, this article focuses upon
the LAVE-SC problem from the analytical view of
GP so that we can discuss new mathematical pro-
gramming properties regarding the estimation tech-
nique.

2 Formulation

A regression structure and error terms to be exam-
ined in this article is expressed by

ye = X¢ 8 + €; where ¢, = pes—1 + N, t=1,..,n (1)

Here, y; is an observed dependent variable at the ¢t
time period, and X; represents an (m x 1) vector
of observed independent variables. The vector 3
are parameter coefficients to be measured and ¢
is an error that is further broken down into two
error terms: €;_; and 7;. Here, p is a coefficient for
SC and 7, is an unobserved, identically distributed

error. The condition, |p| < 1, is usually assumed
for the coefficient representing the first-order SC,
as well.

Equation (1) can be expressed by

y = XeB+ pet—1+m 2)
= pyp—1+ (X — pXi-1)B+m

To estimate both p and (3, we formulate regres-
sion (2) as the following LAVE-SC problem:

n
minz Iyt — pyt—1 — (X¢ — pX-1)B|. (3)
t=2

Alternatively,

min . Z?:? d?- + dt—
st pye—1 + (Xe — pXp1)B+df —df =y (4)
df >0andd; >0 t=2,...,n.

Here, 7; is further broken down into two error
terms: df and d; . Each of them represents posi-
tive or negative deviations of 7, respectively.

Let g¢(p, B) = vyt — pys—1 — (X¢ — pX¢_1)B and
f(p, /8) = Z?:Z |gt(p7 /a)l then problem (3) can be
reformulated as min f(p, 8)|. Functions g:(p, 3) and
f(p, B) have the following properties.

Theorem 2.1 g;(p, 3) is quasi-convez function or
quasi-concave function.

Theorem 2.2 For an arbitrarily fized p, f(p, )
is a piece-wise linear function of 8. For an arbi-
trarily fized B, f(p,B) is a piece-wise linear func-
tion of p.

3 Algorithm

Since Theorem 2.1 implies that (4) is a nonlinear
programming problem, this study cannot depend
upon an ordinal GP algorithm to solve LAVE. How-
ever, this study utilizes the following iterative GP
procedure to obtain a solution of (4) because of
Theorem 2.2.

Stepl: Set k = 1. Identify a vector of initial 8
estimates. Let [ be such a solution. [Or-
dinary Least Square and LAVE, available in
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many statistical softwares such as TSP and
SAS/ETS, can procedure the initial 8 esti-
mates.]

Step 2: In order to obtain the p estimate, the GP
model min f(p, B) is solved and let p be SC
estimate of min f(p, G%).

Step 3: Using pg4+1, the GP model min f(pg41, 3)
is solved to obtain the estimates of # and
let pr+1 be the estimates obtained from

min f(pk41, B).

Step 4:  If the objective function f(p,[) sat-

isfies the following condition: f(f’hﬁk) <

f(Br-1, Br+1), then set (p*, 6%) = (Bx, Bi) and
stop this computational process. Otherwise

k =k + 1 and go to Stepl.

This study provides four important perspectives re-
garding this LAVE-SC algorithm, each of which can
be summarized in the following manner.

(a) First, many special computer codes have been
developed for LAVE in which unique algorithmic
features of ming f(px+1, ) are fully utilized to re-
duce its computational effort and time.

(b) Second, when solving LAVE min, f(p, Bk), we
can utilize the following simple approach:

Pk+1 =
: —XoBk ys—Xsb Yn—XnB
median | %2 2 koL "
n—X18c’ y2—X26:’ P Yn—1—Xn—1Bk

(c) Third, there is a common assumption related
to min, f(p, Bx) and ming f(pk+1,0); the problem
degeneracy does not occur at a vector or optimal
parameter estimates. Here, this article describes
the degeneracy problem, using ming f(pg+1,5).
The degeneracy may occur when the parameter
vector 8 of ming f(pk+1,3), composing m unknown
parameter estimates, is fitted to a data set in which
as least m sample observations are on the regres-
sion hyperplane. If more than m sample obser-
vations are on the regression hyperplane, the de-
generacy may occur. Mathematically, this degen-
eracy can be defined by the following statement:
the problem occurs when optimal d} or d; for
some t becomes a basic variable and equals zero in
ming f(pk+1,5)- In a dual form of ming f(pr+1, 8),
the degenerated point is a sample observation with
w¢ = 1 or —1 and it is on the regression hyperplane
where w; is the dual variable of the i** constraint

of ming f(pk+1, B)-
(d) Finally, the above degeneracy corresponds

to the ”perfect collinearity”, which is not a se-
rious problem in a view of statistics because we
can solve it by dropping one of perfectly correlated
variables. The multicollinearity is exactly speaking
"near-collinearity” that several variables closely lo-
cate each other in a data space. A difficulty as-
sociated with the near-collinearity is that when it
occurs, parameter estimates become very large in
those magnitudes and/or produce signs opposite to
our expectation. To deal with this type of statis-
tical difficulty, we may incorporate additional con-
straints, expressing prior information on parame-
ter estimations. We put the following two assump-
tions:

(A1) The parameter spaces (U) is closed.

(A2) There is some objective value s such that the
solution set S = {(p, 8)| (0, 8) € Uand f(p,8) <
s}. Then, we have the following three properties:
(P1) When the algorithm does not terminate, it
is observed that f(px, Bk) > f(Pk+1, Br+1)-

(P2) It the algorithm terminates, then
min, f(p, 8) = ming f(p*, B*) = f(p", B%).

(P3) Assume that the algorithm generates an in-
finite sequence {(p”k,Bk) |k = 1,2,...}, then there
exists a limit value f* such that limy_, o, f (4, Bk) =
f*. If f* <s, then the following condition is main-

tained: min, f(p, 8) = ming f(p, 8) = f(p, ).

4 Numerical Results

In the presentation, we will illustrate difficulty for
solving the LAVE-SC problem from simple exam-
ples and show how much our GP approach can im-
prove the statistical efficiency by comparing it with
a previous algorithmic effort.

References

[1] Sueyoshi, T. and Sekitani, K., ” Goal Program-
ming Regression with Serial Correlation:Policy
Implications for Japanese Telecommunications
Infrastructure Development”, OMEGA Inter-
national Journal of Management Science 26
(1998) 195-205. '

(2] Sueyoshi, T. and Sekitani, K., ”Mathematical
Properties if Least Absolute Value Estimation

with Serial Correlation”,Asia-Pacific Journal
of Operational Research 15 (1998) 72-92

[3] Weiss, A.A.”Least absolute estimation in

the presence of serial correlation”,Journal of
Econometrics 44 (1990) 127-158

— 137 —





