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Limit Theorems for the Departure Process of a MAP/M/c Queue
and an Application to Two—stage Composite Tandem Queues

02102690

Abstract The departure process of a MAP/M/c
queue is first investigated and the asymptotic logarith-
mic Laplace-Stieltjes transform (ALLST) of the pro-
cess is identified in terms of the MAP and the expo-
nential service rate. The ALLSTs of the superposed
departure process and the randomly splitted process
are also obtained. We apply these limit theorems to
the asymptotic analysis of the tail behavior of two-
stage composite tandem queues and show exponential
decay of the stationary distributions.

1. Introduction

It is well known that in fairly general single-
stage queues, the stationary waiting time distri-
bution decays exponentially fast. Consider a sin-
gle server queue with a stationary sequence of in-
terarrival times {7,}. If the asymptotic logarith-
mic Laplace-Stieltjes transform (ALLST) ¢(s) =
lim, 0o~ log E (exp(—s Y1, 7:)) exists and the
service time distribution satisfies certain condi-
tions, then
: -1
11111_{rg°w logP (W > w) = -6 (1)

and the decay parameter 6 is determined by ¢(s)
and the LST of the service time distribution [2].

In tandem queues or queueing networks, an ar-
rival process to one queue is formed by depar-
ture processes of the other queues. Thus, to ap-
ply the above asymptotic result to queueing net-
works, we need to investigate the departure pro-
cess. Chang (1] considered a discrete time sin-
gle server queue with constant service rate. As-
suming that external arrivals satisfy sample path
large deviation principle, he derived a relation be-
tween the ALLSTs of the arrival and departure
process. O’Connell [4] obtained a similar result
for a single server queue with stochastic service
times. Though these results are potent tool to
analyze queueing networks, it seems difficult to
extend them to multiple server queues since the
analysis is essentially based on the Lindley equa-
tion.

REITHEKRE  iEE—
01605320 WREI¥EKF HARES

KATOU Ken’ichi
MAKIMOTO Naoki

In this paper, we consider a multiple server
queue with Markovian arrival process (MAP) and
exponential service time distribution. The depar-
ture process of a MAP/M/c queue is first investi-
gated and the ALLST of the process is identified
in terms of the MAP and the exponential service
rate. The ALLSTs of a superposed departure pro-
cess and a randomly splitted departure process are
also derived. We apply these limit theorems to the
asymptotic analysis of the tail behavior of two-—
stage composite tandem queues and show expo-
nential decay of the stationary distributions. Qur
analysis is based on a matrix algebraic approach
and is very different from those in (1, 4].

2. The Departure Process of a MAP/M/c
Queue

We consider the following stable MAP/M/1
queue. The background Markov chain of the MAP
has an irreducible representation (Ag, 4;) where
A; (Aop, respectively) governs transitions with
(without, respectively) an arrival. The service rate
is pur when there are k& customers in the system.
We assume that 0 < yp < pfork=1,---,c—1
and pp = p for £ = ¢,c+1,---. Note that a
MAP/M/c is a special case with p = ku/c for
k=1,---,c— 1. Let D, denote the nth depar-
ture epoch with the convention Dy = 0. The
queueing process observed just after the depar-
ture epoch forms a discrete time Markov chain
{(Nn, I,); n > 0} which is ergodic by the sta-
bility condition. The stationary distribution of
{(Nn, In)} is denoted by = = () with 7, =
() Tty = iMoo P (N, £a) = (k,9)).

We denote by u )¢,y (s) the Laplace-Stieltjes
transform (LST) of the interdeparture time con-

ditioned on the number of customers and states of
the MAP, that is

i - bt —st
u(k,i)(f,])(s) —/0 €

dP (Dy <t, (M, ) = (4,5) | (Mo, o) = (k,9))
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and let U(s) = (u(k,i)(e,j)(s)). To make the depar-

ture process stationary, we assume that (Ng, fo) is
distributed according to the stationary distribu-
tion 7. Then, the logarithmic LST of nth depar-
ture epoch will be given as

n™"log E (exp(~sDn) | (No, o) £ )
=n"llogmU"(s)1".

Let f(s) be the Perron-Frobenius eigenvalue of
A;(sI — Ag)~! and define a bivariate function

9(s,2) = f(s + z)——.

w—z

Also let zp be the unique positive solution of
9(0,z) = 1 and define

{z| -s<z<0}, 0 <'s < o,
{z| —s<z<xz9—5}, T <S5

£(s) = {

Then, ¢(s) is given by the next theorem.

Theorem 1  ¢(s) = inf ¢g(5) log g(s, z).

It is observed from this theorem that u; (k =
1,---,c—1) does not affect ¢(s) provided puy, < p.

3. Superposition and Random Splitting

Suppose there are K; queues MAP;/M;/c; (i =
1,---, K1) operating independently of each other.
The ALLST ¢i(s) of MAP;/M;/c; can be ob-
tained from Theorem 1. Let N;(t) be the

number of departures from MAP;/M;/c; during.

[0,t). From the inversion theorem (3], ¥;(s) =
lim; 00t~ log E (exp(—sN(t))) exists and is given
by —¢5—1)(—s) where ¢1(.—1)(s) is the inverse func-
tion of ¢;(s). Let @(s) be the ALLST of the su-
perposed process consisting of K independent de-
parture processes.

Theorem 2 ¢(s) = ¥(~1(s) where %(s) =
YK %i(s). In particular, if ¢;(s) = ¢1(s) for all
i=1,---,K then ¢(s) = ¢1(s/K).

Next, we consider the ALLST of a process ob-
tained by splitting the original process by certain
routing discipline. Suppose there are K5 possi-
ble routes. Let {Ni;k = 1,2,---} be a random
sequence of customers who select (say) route 1.
We assume that {Njy; — Ni} forms an i.i.d. se-

quence of random variables whose z—-transform is
denoted by G(z) = Y72, 2"P (Ni41 — Nk =n).

The ALLST ¢(s) of the splitted departure pro-
cess is expressed in terms of the ALLST ¢(s) of
the original process.

Theorem 3  ¢(s) = log G(exp(¢(s))).
4. Application to Two—stage Composite
Tandem Queues

We consider a two—stage tandem queue where the
first stage consists of K independent MAP/M/c
queues while there are K» single server queues
having general service time distributions in the
second stage. We write jth queue in the ¢th stage
as Qf (¢=1,2; =1,---,K). A customer who
completes the service in the first stage moves to
one of the queues in the second stage according

to a Markovian routing discipline. Let pgf) be a
probability that those who depart from Q} will
be routed to Q? given that the previous customer
went to Q?. Under this setting, Nii1 — N in
Section 3 follows a discrete phase—type distribu-
tion and its z—transform can be easily calculated
from P = (pff)) Note that the arrival process
into Q? is a superposition of departure processes of
QL (k=1,---, K)) that are routed to Q?. There-
fore, the ALLST ¢;(s) of the arrival process into
Q? can be obtained by combining Theorems 1, 2
and 3. Assume now that ¢;(s) + loghj(—s) = 0
has a positive solution s = §; where h;(s) is the
LST of the service time distribution of Qf Then
the distribution of the stationary waiting time W}
in Q? decays exponentially as

; -1 . — _§.
Jim w logP (W; > w) = —§;

as indicated in (1).
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