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1 Imtroduction

In this paper we consider the following general
integer allocation problem:
Problem (P, M?)

1m
minimize Zfi (z:)
1==]

subject to Zgi(w,-) <b,
i=1

L <z <,
x; integer,

i=1,...,n,
1=1,...,n,

where z; € R, ©+ = 1,...,1; f,'({li,'), i
1,...,n, are concave functions on R; g:(x;),
1=1,...,n, arc convex functions on R; b is a
constant; and [; and u; (I; < w;). 1 =1,...,n,
are integers. We denote the rectangular con-
straint (1) by M' = {z € R*|l; < z; < ui, i =
1,...,n}. The problem is difficult to solve
since even those withh a linear constraint is
shown to be NP-hard (sec, e.g., [Sa74]). Al-
though plenty of algorithms for solving gen-
eral continuous concave minimization prob-
lems have been proposed (see [Ben95, HT90]),
only a few deal with their integral counter-
parts. In Benson et al. [BES0, BEH90] gen-
cral branch and bound methods are proposed
for problems with polyhedral regions and in-
teger constraints.

Here we develop a branch and bound algo-
rithm for solving Problem (P, M) since nomne
of the above mentioned algorithms can be
used directly. Our algorithin takes advantage
of the fact that Problem (P, M) has only one
constraint. The algoritlun solves a continuous
subproblemn of a more simple form, i.c., the

objective function is lincar. which is produced
by taking a couvex cuvelop of the original con-
cave function over a subsct of feasible region.
The subproblem is solved by manipulation of
the Kuhn-Tucker conditions.

To improve the cfficiency of our algorithm
some heuristic methods are incorporated to
obtain fcasible solutions whose objective func-
tion values may improve the upper bound. We
report the computational results of the algo-
rithm.

2 The Algorithm

In this paper we use convex envelope as an
underestimating function of thc original ob-
jective function.

Definition 1 Let M C R"™ be conver and
compact, and let f : M — R be lower semi-
continuous on M. A function ¢y : M — R
s called the convex envelope of f on M if it
satisfies:

(a) 9 is convex on M,

(b) ¥(z) < f(z) for all z € M,

(c) there is no function ¢ : M — R satisfying
(a),(b), and 9 (z) < () for some 2z € M.

By Theorem IV.8 of [HT90]) if f(z) =
Yoy fi(z;), then the convex envelope of f(x)
taken over a rectangle {2 | r; < z; < si,t =
1,...,n} is equal to the sum of the convex cn-
velopes of the function f;(x;) taken over the
line segments r; < 2; < s;,t = 1,...,n. The
convex envelope of a convex function f;(z;)
taken over a line segment r; < z; < §; is
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simply the affine function that agrces with f;
at the end points of this segment, i.e., the
function i(z;) = fi(r:) + ,‘s:”:{: (g —
i), 1i <2 <8

At cach node of the branch and bound tree
-we solve a continuous convex undecrestimat-
ing problem of Problem (P, M!) over M! =
{z |l <z <wl 1=1,...,n}, which is given
as follows.
Problem (CUP, M")

n
minimize Zwi (z:)
i=1

subject to Zgi(fbi) <b,
i=1
<z <ul, i=1,...,n.

The algorithm maintains a set W of rectan-
gles which may contain the optimal solution.
It starts with solving the problem (CU P, M9).
If it finds an integer optimal solution then the
problem is solved. Otherwise the objective
value provides a lower bound LB? for the op-
timal value of Problem (P, M°). We denote
the optimal solution of the relaxed problem
as 20 and UB® = +00. In the subsequence
step ¢ of the algorithm, we have a rectan-
gle chosen from the previous step, the lower
bound LB!, the upper bound UB!, the in-
cumbent solution 2¢ and the optimal solution
z! associated with the rectangle. We subdi-
vide the rectangle into two smaller rectangles
M), 4 = 1,2, each with integral extreme
points. The new rectangle M(tD) is gener-
ated by taking u! = |2} for some compo-
nent .l?j with non-integer value while keeping
the other unchanged. Similarly, the rectangle
M2 s generated by taking It = |zt] + 1.
Then the two rectangles are added to the set
W and the problems (CU P, M(1%)) are solved.
If the problem is infeasible then it is deleted
from the set W. Otherwise the optimal value
of the problem is used to update the current
lower bound to the new lower bound LB't!.
Morecover, if the optimal solution z' is inte-
gral, then the upper bound UB! is updated

by UB'*! = min{UB", Y™, fi(2!)} and the
rectangle is deleted. If UB'T! = 1, fi(a)
then set 2z¢ = z'. When the upper bound
is updated, rectangles whose correspounding
problems having optimal values greater than
or equal to UB't! are crased from the set W.
If the set W is empty then we conclude that
the point z¢ is the optimal solution. Other-
wise remove the rectangle associated with the
lower bound LB't! from the set W and pass
it to the step ¢ + 1.

A discussion similar to that of Benson et
al. [BEH90] shows that the branch and bound
algorithm terminates after a finite number of
steps with an optimal solution z¢ for Problem
(P, M9).
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