1—-C—7

1998 FEFEHA ARV —V g v X Y H—FFL
EEMRARES

Software Safety/Reliability Modeling
with Imperfect Debugging

BEUKE
BBUKE

01307475
01702425

1 Introduction

We develop a software safety/reliability assessment
model which assumes that the system causes haz-
ardous conditions randomly in operation. We use a
Markov process to describe the time-dependent behav-
ior of the software system, taking account of the soft-
ware reliability growth process. Several quantitative
safety/reliability measures are derived from this model.
Especially, this model can provide a metric of software
safety defined as the probability that the system does
not fall into hazardous states at a specified time point
[1}. Numerical illustrations are presented to show that
this model is useful for software safety/reliability mea-
surement and assessment.

2 Model description

‘We give the following assumptions to construct the
software safety/reliability model in dyné.mic environ-
ment, taking account of the software failure-occurrence
phenomenon:

Al. When the software system operates without soft-
ware failure-occurrences, the holding times of the
safe and unsafe state are distributed exponentially
with means 1/6 and 1/7, respectively.

A2. A debugging activity is performed when a software
failure occurs. Debugging activities are perfect
with probability @ (0 < @ < 1), while imperfect
with probability b(= 1 — a). We call a the perfect

debugging rate.

A3. Software reliability growth occurs in case of the
perfect debugging activity. The time-interval be-
tween software failure-occurrences is distributed
exponentially with mean 1/),, where n =
0,1,2,... denotes the cumulative number of cor-

rected faults.

A4. Only one fault is corrected and removed from the
system in the state of perfect debugging activity

and the debugging time is not considered.

The state space of stochastic process {X(t), t > 0},
which represents the state of the software system at

R —
MI:E:

TOKUNO Koichi
YAMADA Shigeru

time point t, is defined as follows:
W,: the system is operating safely,

U,: the system falls into the unsafe state.
From assumption A2, when the next software failure
occurs in {X(t) = W,.} or {X(t) = U,},
[W (with probability b)
X(6) = { Wat1 (with probability a). (1)

Further, we use Moranda model [2] to describe the
software reliability growth process. That is, when n
faults have been corrected, the hazard rate for the next
software failure-occurrence, A,, is given by

Ap=DEk" (n=0,1,2,...; D>0, 0<k<1), (2

where D and k are the initial hazard rate and the de-
creasing ratio of the hazard rate, respectively.

The sample state transition diagram of X(t) is illus-
trated in Fig.1.

3 Software safety/reliability measures

The distribution of random variable S, which repre-
sents the time spent in correcting n faults, is obtained
as

Ga(t) = Pr{S. < t}

n—1
=) A7 [1- e

i=0

(t20;,n=1,2,...; Go(t)=1), (3)
where constant coefficients A?’s are given by

Al=1

n—1
A .
A? = 2
=52

i#i

n=23,...;i=0,1,2,...,n - 1)

Further, the state occupancy probability that X (t)
is in state W, at time point ¢ is obtained as

Pw, (t) = Pr{X(t) = W,}

n
= Bre~(Aato+mt o EBZ'e_“‘\“

=0

(4)

(n=0,1,2,...), (5)

where constant coefficients B™ and B are given by

n—1
—0H al;
=0

B" = — : ’ (6)
GRS)
j=0
n—1
(An+71—aX) H A
Bp = =
P+ 0+n-a) [T - N)
i
(i=0,1,2 ..., n),)
respectively.

Then, software safety [3] is defined as

0o

S@t) =) Pw.(t), (8)
n=0

- which represents the probability that the system does

not fall into any unsafe states at time point ¢.

4 Numerical Examples

The software safety metrics, S(t) in (8) for various
values of § are shown in Fig.2, where D = 0.1, k = 0.8,
a = 0.9, and 7 = 0.1. Fig.2 indicates that the software
safety becomes larger as 6 decreases and converges to
n/(6+n), which denotes the steady probability that the
system is operating safely in the case where software
failure-occurrences are not considered.

S(t)’s are shown in Fig.3 for various values of k,
where D = 0.1, a = 0.9, § = 0.01, = 0.1. Fig.3 in-
dicates that the software safety converges earlier with
decreasing k. Smaller k£ means that software reliability
growth occurs more rapidly. Since this model assumes
that the system is not unsafe in causing a software fail-
ure, the software safety becomes larger with increasing
k, which means the high frequency of software failure-
occurrences.

References
[1] S.J. Keene, Jr., “Assuring software safety”, Proc.
Annu. Reliability and Maintainability Symp., Las
Vegas, U.S.A., 1992, pp 274-279.

[2] P.B. Moranda, “Event-altered rate models for gen-
eral reliability analysis”, IEEE Trans. Reliability,
vol R-28, no 5, 1979, pp 376-381.

[3] S. Yamada, K. Tokuno, Y. Kasano, “Quantitative
assessment models for software safety /reliability”
(in Japanese), Trans. IEICE A, vol J80-A, no 12,
1997, pp 2127-2137.

Fig.1 A diagrammatic representation of state tran-
sitions between X(t)’s.

3()
1
k 0=0.01
0.9 \
k 6=0.02
0.8 ¥ 6=0.03
0=0.04
0.7
0=0.05
0.6
0 200 400 600 800
Time
Fig.2 Dependence of 6 on S(t) (D = 0.1, k = 0.8,
a=0.9,7=0.1).
S(1)
1
0.
0.
0.
0.
0.9
0 200 400 600 800
Time

Fig.3 Dependence of k on S(t) (D = 0.1, a = 0.9,
6 =0.01, n = 0.1).

