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The Latin Hypercube Importance Sampling Method
for Monte Carlo Simulation
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1. Introduction

Recently, a lot of efforts are devoted
to the methods of Monte Carlo simulation,
for example, Markov Chain Monte Calro
methods for Baysian estimation.

In the risk ( safety ) assessment, the
Laten Hypercube Sampling (LHS) Monte Carlo
method 1s defaultly necessary. Because its
important task, the uncertainty analysis,
requires the estimation of the propagation
of uncertainty, which 1is usually not
analytically tractable, and even an
ordinal Monte Carlo method can not be
applied due to the high level of
dimensionality. Only the LHS Monte Carlo
methods can overcome the difficulty with
its capability to reduce the variance of
the output of the Monte Carlo simulation.

The LHS method, developed by McKay,
Conover and Beckman[l], 1s an extension of
stratifying method, and shows good
performance in variance reduction, but
that reguires the stratification of the
marginals with equal probabilities
( equiprobability property ). which means
the necessity of the easily tractable
inverse function of the marginal
distribution function. Then especially,
it 4is not directly applicable to the
problem with correlated ( dependent )
variables.

To handle the dependency in LHS Monte
Carlo simulation, the author introduce the
idea of importance sampling method
developed by Rubin [2]. Practically, this
new method do not require the intractable
integration of the density of multi-
variate distribution function, so be
applied to some large system problem.

2. Dependent Variables
The dependency in variables often

appears in the Monte Carlo simulation. For
example, in the uncertainty analysis, some
uncertainty has the same origin for the
specified group members, then some
correlations within the same variables of
uncertainty of such members are to be
assumed. On the other hand, in some large

system model of structual <reliablity
problem, one can find the dependency in
stress variables and/or fragility

variables of some adjacent components.

For the control of the correlations,
Iman and Conover proposed dependence
induction algorithm ( ranked Cholesky (RC)
method ) [3] and the ranked Gram-Schmidt
(RGS) algorithm was introduced by Owen[4].
But these methods can handle only low
value of correlations. That 1s essentially
due to the Cartesian stratification

Railway Technical Research Institute

Hiroshi FUKUOKA

framework of LHS method itself.

In this paper, the author proposes the
new methods which can introduce non-
Cartesian stratifications and then can
handle the high correlation problem.

3. Latin Hypercube Sampling(LHS) Method
We are 1interested in the class of
estimators of the form

T(Xp---,Xn)=u/N>§g(X,-> (1)

where g()= arbitrary function.

The estimator 1 represents the sample
mean, which 1s an estimator of l?(}f), for

h
gXh=X, sample  moment  for
g(X) =X and empirical distribution
function 1if g(X)=1 gor Xsx, =0
otherwise.

For Latin Hypercube Sampling,

X.’j = Fj-l((ﬂj(i)_Uij)/n)

i=L.,n j=L.,p (2)
where
7 ; (D, ; () random permutation of

i=1...,n

and all 72! outcomes are equally probable,
U; : U (0]) random variable
(these n p uniform variates are
mutually independent)

In this paper, we discuss the lattice
version , in which [Gi in (2) 1is replaced

by the constant value, 0.5 (Owen [4]).

4. Latin Hypercube Importance Sampling
(LHIS) Method
The idea of importance-sampling method

is introduced as follows:
Let the sample space S of X be
partitioned into I disjoint strata fﬂ.

Let ¥ be the indicator of the stara S,
that is Sy for Y=y . Then we introduce

the state space (X,Y), then
fXY)=f(X). 1£ XES,,Y=y

=0, otherwise. (3)
Next, choose an importance-sampling

distribution .for E’, where 1its density



fs(Y) 1is an approximation of f@). ana

fs(Y) has positive support wherever f(Y)
does. ' _

The key 1s the selection of sample
distribution. We have three variations:

(a) Cartesian(LHIS-C)
. 14 X
fs(Y)=Hf’(IG)- (4)
j=

in the case of little correlations
between X,'s. To get Y , we can draw Y,
from f 1(Yl) ., and next draw Y, from
2(Y,), ..... Y £rom (Y in the

2 n n

lattice version of (2). If
f(Y) can be represented as the same form

as (4), that is an ordinary LHS, but one
can control (reduce) the correlations by
the importance formulation.
(b) step transition(LHIS-ST)

= FOTFEYD. o

in the case of low value of correlations
X,'s and little

for the others‘.

manner of the

between adjacent

correlations Y} ‘s are
drawn in the same manner as (a). If Y; ‘s
have identical distribution then we can

use the same f/(YllY}_l)

(c) full transition(LHIS-FT)

fs(Y>=flm)flffa’,.lY,_l,m,x), ()

for the highly correlated case.

Then  f(X|Y)*fs(Y) provides an

importance-sampling distribution for
(X,Y) . Therefore, calculate

r, = f(XI’YI) (l=1,
FXY)* fs(Y)

and estimate the marginal density for

f(X) vy
f(j)=if()€|1’l)n . )

r.

13

i=1

1) (7)

5. Performance

Owen[4] examined the effectiveness of
two algorithms, (1) ranked Cholesky (RC)
method and (2) ranked Gram-Schmidt (RGS)
algorithm for reducing off-diagonal
correlations. He adopted the root mean
square correlation (RMSC) among columns of

X as a performance measure. We use the

correlation

(RMSEC) among columns of X . If RMSEC is
used to the uncorrelated case, then 1t
reduced to RMSC.

Sample problems are (1) uncorrelated
case for LHIS-C, (each marginal

aist. ~N(0,1), p,, =0, for l=m, where

P : correlation between column i and

root mean sguare error of

column j of X) (2) cases of low value
correlation between adjacent components

for  LHIS-ST ( P, =C :constant, for

m=Il-1or m=I[+1, p, =0 otherwise) ,
(3) correlations are set to each
components for LHIS-FT ( p, =C : constant,
for [ #=m ).

Figure 1 shows RMSEC ( RMSC ) versus

n for p = n - 1. The new methods shows
rather good performance.
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Fig. 1 RMSEC ( RMSC ) versus n
for p=n - 1

(the values for RC and RGS algorithm from
[4] are also shown : two lines ). '

6. Concluding Remarks
New methods for LHS with dependent

variables are proposed. These methods
allows LHS Monte Carlo simulations to be
performed with high values of correlation.
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