ファジィ線形計画問題における適合性と逆問題について

桑野 裕昭 金沢女子短期大学 KUWANO Hiroaki 01109213

はじめに

本報告では、次のファジィ線形計画問題(可能性線 形計画問題)の逆問題を定義し、その性質を調べる。

(FLP) maximize
$$\tilde{c}^T x$$

subject to $\tilde{A}x \leq \tilde{b}, x \geq o$

 $CCC x \in \mathbb{R}^n \ CDD$

$$egin{aligned} \widetilde{A} &= \left(\widetilde{a}_{ij}
ight), & \widetilde{m{b}} &= \left(\widetilde{b}_{1}, \cdots, \widetilde{b}_{m}
ight)^{T}, \ \widetilde{m{c}} &= \left(\widetilde{c}_{1}, \cdots, \widetilde{c}_{n}
ight)^{T} \end{aligned}$$

の要素はすべて相互作用のない三角型の可能性変数 である。これらの可能性変数は $\{a_{ii}^1\}$, $\{b_i^1\}$, $\{c_i^1\}$ を 1-レベル集合、 $[a_{ijL}, a_{ijU}], [b_{iL}, b_{iU}], [c_{iL}, c_{iU}]$ を 0-レベル集合にそれぞれ持つとする。

ここで対象とする逆問題は FLP の代替問題 -Kuwano et al. [1] において FLP に対して最適性の 概念を定義する過程において現れるパラメトリック な代替問題 - に対して定義される計画問題である。 以下では[1]で与えた適合性に関連する条件の下、 FLP の代替問題とその逆問題との関係を調べる。

FLP の代替問題 2

FLP に関するパラメトリックな代替問題を次の ように定義する。 $(0 \le \alpha, \beta \le 1)$

$$(\text{PLP}_{U^{-}}(\alpha, \beta)) \quad \begin{array}{l} \text{maximize} \quad \boldsymbol{c}_{U}^{\beta T} \boldsymbol{x} \\ \text{subject to} \quad \boldsymbol{x} \in X(\alpha), \\ \\ (\text{PLP}_{L^{-}}(\alpha, \beta)) \quad \text{maximize} \quad \boldsymbol{c}_{L}^{\beta T} \boldsymbol{x} \\ \text{subject to} \quad \boldsymbol{x} \in X(\alpha) \end{array}$$

であり、 c_{jL}^{β} 、 c_{jU}^{β} はそれぞれ \tilde{c}_{j} の β -レベル集合の によって表し、集合 $\left\{ m{y}^{T}m{c}^{1} \left| m{y}^{T}D^{lpha} \geq \mathbf{o} \right. \right\}$ が下に非

下限及び上限である。また

$$X(\alpha) = \left\{ \boldsymbol{x} \geq \mathbf{o} \middle| \operatorname{Poss} \left(\tilde{A} \boldsymbol{x} \leq \tilde{\boldsymbol{b}} \right) \geq \alpha \right\}$$

である。

特に α を任意に固定し $\beta = 1$ とおくと PLP_{U} $(\alpha,1)$ と PLP_L- $(\alpha,1)$ は一致する。そこで、その問 題を簡単に PLP- α と表す。また、各々の $\alpha \in [0,1]$ に対し PLP- α の最適解を FLP の α -最適解と呼ぶ。

仮定 1 X(1) は空ではない有界な集合である。

定義 1 可能性 α に対して

$$c^1 \in \mathcal{C}\left\{\left.oldsymbol{a}_{iL}^{lpha T}\right| i \in I(oldsymbol{x}_0)
ight\}$$

が成立するならば、 α は PLP-1 に対して適合する という。ここで x_0 は PLP-1 の最適解、 $I(x_0)$ は **x**₀ において活性な制約式の添字集合である。また $a_{iL}^lpha=(a_{i1L}^lpha,\cdots,a_{inL}^lpha)$ であり a_{ijL}^lpha は $ilde{a}_{ij}$ の lpha-レベ ル集合の下限を表す。

定理 1 任意に $\alpha \in [0,1]$ を固定し $x_0, x^*(\alpha)$ を それぞれ PLP-1, PLP- α の最適解とする。また $I(\mathbf{x}_0) = \{i_1, i_2, \cdots, i_p\}$ とおき

$$D^{lpha} = \left(a_{i_1L}^{lpha T}, a_{i_2L}^{lpha T}, \cdots, a_{i_pL}^{lpha T}
ight) \in \mathbf{R}^{p imes n}$$

と表す。このとき α が PLP-1 に適合することと 問題

$$(Q_{\alpha})$$
 minimize $\boldsymbol{y}^T \boldsymbol{c}^1$ subject to $\boldsymbol{y}^T D^{\alpha} > \mathbf{o}$.

に最適解が存在することは必要十分条件をなす。

ここで $\boldsymbol{c}_{U}^{\beta T}=(c_{1U}^{\beta},\cdots,c_{nU}^{\beta}),\, \boldsymbol{c}_{L}^{\beta T}=(c_{1L}^{\beta},\cdots,c_{nL}^{\beta})$ Q_{α} の最適値関数を $\psi(\alpha)=\inf\left\{ \boldsymbol{y}^{T}\boldsymbol{c}^{1}\left|\boldsymbol{y}^{T}D^{\alpha}\geq\mathbf{o}\right.\right\}$

系 1 任意に固定された α に対し $\psi(\alpha) = 0$ ならば α は PLP-1 に適合し、 $\psi(\alpha) = -\infty$ ならば α は PLP-1 に適合しない。また、それぞれ逆も成立する。

系 2 任意に固定された α に対する \mathbf{Q}_{α} の最適解 を \mathbf{y}^* で表す。このとき α が PLP-1 に適合することと $\mathbf{y}^* = \mathbf{o}$ であることは必要十分条件をなす。

一方、 $PLP-\alpha$ の最適値関数は $x^*(\cdot)$ と ψ は次の 定理で述べられる関係を持つ。

定理 2 任意の $\alpha \in [0,1]$ に対して α -最適解 $\boldsymbol{x}^*(\alpha)$ がただ一つ定まり、 $\psi(\alpha) = 0$ であるならば、 $\boldsymbol{x}^*(\cdot)$: $[0,1] \to \mathbf{R}^n$ は連続である。

3 逆問題

この節では FLP の代替問題族において重要な役割を果たす PLP- α に対し、逆問題を次のように定義し、その性質を調べる。

maximize
$$\operatorname{Poss}\left(\tilde{A}\boldsymbol{x} \leq \tilde{\boldsymbol{b}}\right)$$

(IP_z) subject to $\boldsymbol{c}^{1T}\boldsymbol{x} \geq z$, $\boldsymbol{x} \geq \boldsymbol{o}$.

いずれかの $\alpha \in [0,1]$ に対し PLP- α の最適値となりうるすべての実数からなる集合を S とし、2つの関数 $\sigma:[0,1] \to S$, $\tau:S \to [0,1]$ をそれぞれ

$$\sigma(lpha) = \max\left\{oldsymbol{c}^{1T}oldsymbol{x} \left| \operatorname{Poss}\left(ilde{A}oldsymbol{x} \leq oldsymbol{ar{b}}
ight) \geq lpha, oldsymbol{x} \geq oldsymbol{\mathrm{o}}
ight\}$$
 \succeq

$$au(z) = \max \left\{ \left. \operatorname{Poss}\left(ilde{A} oldsymbol{x} \leq ilde{oldsymbol{b}}
ight)
ight| oldsymbol{c}^{1T} oldsymbol{x} \geq z, oldsymbol{x} \geq \mathbf{o}
ight\}$$

によって定義する。このとき次の定理が成り立つ。 **定理 3** 任意の $\alpha \in [0,1]$ に対し、 $\psi(\alpha) = 0$ であるとする。このとき σ と τ とは逆関数の関係にある。 定理 4 任意の $\alpha \in [0,1]$ に対し、 $\psi(\alpha) = 0$ であるとする。このとき、すべての α に関する PLP- α の最適解 $x^*(\alpha)$ が一意的に定まるならば、 σ は連続である。

4 おわりに

本報告において、ファジィ線形計画問題(可能性 線形計画問題)の代替問題に対して逆問題を定義し た。代替問題とその逆問題の最適値関数は、それ ぞれ、制約式系に関わる可能性と (Zimmermann 流 に言えば)目的関数の aspiration level をパラメー β (変数)とする関数であり、任意の $\alpha \in [0,1]$ が PLP-1 に適合しているならば、それらが互いの逆 関数となることを導いた。また、適合性については 幾つもの同値な条件が存在していることを示した。 今後は PLP_{U} -(α , β), PLP_{U} -(α , β) に対しても同 様な逆関係を構成する問題を定義し、FLP そのも のに対して逆問題を定式化する必要があろう。但 し、本報告では言及しなかったが、本質的な問題と して可能性変数(ファジィ数)間の順序関係がその定 式化に深く関わってくるため、その点も研究すべき であると考えている。また α -最適解の α に関する 連続性についても集合値関数の観点から研究すべき であると考えている。

参考文献

[1] Kuwano, H., S. Sakai and S. Kushimoto, "The Possibility Distribution of α -Optimal Value $\tilde{Z}(\alpha)$ in Fuzzy Linear Programming Problem", Math. Japonica, Vol.39, No.1, (1994), 137–145.