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1 Introduction

Let G = (V, E) stand for an undirected multi-

graph with a set of V' of vertices and a set E .

of edges, where an edge with end vertices u and
v is denoted by (u,v). For two disjoint subsets
X, Y C V, we denote by Eg(X,Y) the set of
edges, one of whose end vertices is in X and the
other is in Y, and by cg(X,Y) the number of
edges in Eg(X,Y). In particular, Eg(u,v) implies
the set of edges with end vertices v and v, and
cglu,v) = |Eg(u,v)]. We denote n = |V, e =
|E|. For a vertexset X CV, {v eV | (u,v) € F
for some u € X} is called a neighbor set of X,
denoted by I'¢(X). A cut is defined as a subset
X of V with ® # X # V, and the size of cut X
is denoted by cq(X,V — X), which may also be
written as cq(X). If X = {z}, cg(z) denotes the
degree of vertex z. A cut with the minimum size
is called a (global) minimum cut, and its size, de-
noted by A(G), is called the edge-connectivity of
(G. The local edge-connectivity Ag(z,y) for two
vertices «, y € V is defined to be the minimum
size of a cut in G that separates z and y. It is
known that there are Ag(z,y) edge-disjoint paths
in G for every z,y € V [1]. A separator is de-
fined as a subset S of V with 0 # S # V such
that the removal of S in G leaves at least two
components. If G # K, a separator with the
minimum size is called a (global) minimum sep-
arator, and its size, denoted by x(G), is called
the vertex-connectivity of G. If G = K,,, de-
fine k(G) = n — 1. The local vertex-connectivity
kg(z,y) for two vertices z, y € V is defined to
be the number of vertex-disjoint paths between z
and y, and «(G) = min{kg(z,y)|z,y € V} holds.
For a separator S, Bg denotes the number of com-
ponents in G — S. Let B(G) := max{fs : S is a
minimum separator in G }.

Given (i) a multigraph G = (V, E), (ii) the de-
mand function r1(z,y) € Z* (Z7*: the set of non-
negative integers) for each z,y € V, (iii) the de-
mand function ro(z,y) € Z¥ for each z, y € V,
the edge and verter-connectivities augmentation

problem, denoted by EVAP asks to augment G
by adding the smallest number of new edges to G
so that the resulting graph G’ satisfies Ag/(z,y) >
ri(z,y) for each z,y € V and k¢ (z,y) > ra(z,y)
for each z,y € V. When the demand func-
tions 71 and ry satisfy ri(z,y) = k € Z* for
each z,y € V and ra(z,y) = | € ZT for each
z,y € V respectively, this problem is denoted by
EVAD(k,l). Without loss of generality, £ > [ is as-
sumed. When r2(z,y) = 0 holds for each z,y € V,
this problem implies the edge-connectivity aug-
mentation problem. When ry(z,y) = 0 holds for
each z,y € V, this problem implies the vertez-
connectivity augmentation problem.

2 Definitions

A partition Xq,- -+, X; of vertex set V means a
family of disjoint nonempty subsets of V' whose
union is V, and a subpartition of V means a par-
tition of a subset of V.

2.1 Edge-Splitting

We introduce a tool that is helpful to solve the
edge-connectivity augmentation problem, called
edge-splitting.

Given a multigraph G = (V,F), a desig-
nated vertex s € V, vertices u,v €lg(s) , and
a nonnegative integer § <min{cg(s,u),cc(s,v)},
we construct graph G’ = (V,E') from G by
deleting 6 edges from Eg(s,u) and Eg(s,v), re-
spectively, and adding new § edges to Fg(u,v).
That is to say, G’ satisfies cgi(s,u):= cg(s,u)—8,
cg'(s,v):= cg(s,v)=6, cg(u,v):= cglu,v)+0,
and cgi(z,y):= cg(z,y) for all other pairs z,y €
V. A splitting is complete if G’ does not have any
neighbor of s.

Theorem 2.1 [2] Let G = (V, E) be a multigraph
with a designated vertex s € V with cg(s) # 1,3
and Ag(z,y) > 2 for every pairz,y € V—s. Then
for each edge (s,u) € E there is edge (s,v) € F
such that Mg/ (z,y) > k for for every pair z,y €
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V — s where G’ is the resulting graph obtained by
splitting (s,u) and (s,v). a

This says that if cg(s) is even, there is always a
sequence of pairs of edges, whose splitting together
give rise to a complete feasible splitting at s.

3 The EVAP(k,2)

In this section, we show that the EVAP(k,2)
with an arbitrary £ can be solved in polynomial
time when the input graph is connected. In case of
the input graph is not connected, the EVAP(k,2)
can be solved in the same manner, but for sim-
plicity, we assume that the input graph is con-
nected. The EVAP(k,2) when the input graph is
connected is the following:

Input: A connected multigraph G =
and an integer k > 2,
Output: G' = (V, E U F) where F is the smallest
number of edge set with

AMG") > k and
k(G >2. 0

To solve EVAP(k,2), it is necessary to add at
least k — cg(X) edges to Fg(X,V — X) for each
0 #X CV,toadd at least 2 — |T'(X)| edges to
Eg(X,V — X)foreach § # X,V — X —T'g(X) C
V, and to add at least bg — 1 edges to connect
components of G — S for each separator S. Hence
a lower bound of the number that must be added
to G to solve this problem is presented as follows:

The Lower Bound (G):

(V. E)

Y(G) = max{[a(G)/2],B8(G) — 1} where

a(G) = max{Z(k—cG +Z —|Ta(X)D},
= 1=p+41

{X1,---,X,} is a subpartition of V with § # V —

Xi—FG(Xi)vi:p+1>"'>q a

We show that the following main theorem holds.

Theorem 3.1 Guwen a connected graph G and an
integer k > 2, G can be made k-edge-connected
and biconnected by adding v(G) new edges. a

Before proving this theorem, we will show some
lemmas.

Lemma 3.1 Let G = (V, E) be a multigraph. We
can augment G by adding a new vertezx s and a(G)
new edges between s and V so that the resulting
graph G1 = (V U{s}, EU F}) satisfies Ag, (x,y) >
k and kg, (z,y) > 2 for each z,y € V, where F}
denotes added the set of new edges. O

Lemma 3.2 Let G = (V,E) and G = (V U
{s},EUF), where F = Fg,(s,V), and assume
that (1) Ag,(z,y) > k and (%) nGz(:c,y) > 2
hold for every z,y € V. If cg,(s) is even and
[a(G)/2] > ,B(G) — 1 holds, then there ts a com-
plete splitting at s without violating (i) and (7).
a

The Proof of Theorem 3.1

Case-(1) [a(G)/2] 2 B(G) - 1

From Lemma 3.1, we can obtain G; = (V U
{s}, EU Fy) with Ag, (z,y) > k and kg, (z,y) > 2
for each z,y € V and |F1| = «(G). From
Lemma 3.2, we can obtain G* = (V, E U F*) with
A(G*) > k and k(G*) > 2 by a complete splitting
at s where edge set F'* is obtained by the splitting.
Case-(2) [a(G)/2] <B(G) -

Similarly to Case-(1), we first obtain Gy = (V U
{s}, FUFy) with \g, (z,y) > k and kg, (z,y) > 2
for each z,y € V and |Fi| = a(G). From the
proof of Lemma 3.2 (details are omitted), we can
show that there is a complete splitting at s so that
MG*UF') > k and (G* U F') > 2 hold where
G* = (V,E U F*) is the resulting graph obtained
by a complete splitting at s and F” is a new edge
set with |F'| = B(G) — 1 — [a(G)/2].

From above, we can show that EVAP(%,2) can
be solved in polynomial time. a

Remarks Even if the input graph is not con-
nected, the EVAP(k,2) can be solved in polyno-
mial time similarly to the above procedure. More-
over, even if the demand function r1(z,y) for edge-
connectivity is given individually for each pair
z,y € V instead of ri(z,y) = k for every pair
z,y € V, this edge and vertex-connectivities aug-
mentation problem can be solved in polynomial
time, similarly to the above procedure. 0O
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