2-D-4

197TFEHAARL -3 X - YUY —FER
EFMEREELER

Two-level Optimal Design Problems for Distribution Systems

02900260 Sophia University
01008610 Sophia University
01201380 Sophia University

1 Introduction

We consider two optimal design problems of dis-
tibution systems. Each problem has a two-level
structure such that at the lower level goods are
supplied to customers with known demands in
such way as to minimize the routing cost. On
the other hand, the upper level determines the
configuration of the distribution system, such as
the location of depots, the number of vehicles as-
signed to each depot, or the assignment of cus-
tomers to appropriate depots, so as to minimize
the total cost of the whole system. We formulate
the following two types of the problem.

Problem I: Among potential locations of
depots each of which possesses its own fixed num-
ber of vehicles, the upper level chooses Np lo-
cations to be used as depot sites. The lower
level then finds optimal routes with minimum
cost from these selected depots to customers.
The problem thus becomes a two-level combi-
natorial optimization problem whose upper and
lower level problems are an allocation problem
and a vehicle routing problem (VRP) with multi
depots, respectively.

Problem II: The upper level can entrust
to Np distributers to distribute goods. The task
of the upper level is to partition the set of cus-
tomers into Np groups and assign each group to
an appropriate distributer. At the lower level,
each distributer solves standard (single depot)
VRP to find a minimal cost route travelling the
assigned customers. Consequently, in this prob-
lem, the upper level problem is a set partitioning
problem, and the lower one is a set of VRP’s.

Both problems can be formulated in a frame-
work of general two-level optimization problem.
Let x,y be decision variables of the upper level
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respectively. Then we define the ULP and the
LLP of this distribution problem as follows :

(ULP) H;lén F(z,R(z"))
s.t. xTeX,
(LLP) R* = min f(z,y)
st. yeY(x)

where X and Y (z) denotes the feasible set of the
ULP and the set of feasible routes under given z,
respectively, and R*(x) stands for the minimum
total cost of the LLP.

2 Problem formulation

Formulation of LLP[

Under given x (the configuration parameters),
the LLP is a VRP with multi depots (Problem
I) or a set of VRP’s with single depot (Problem
IT). We slightly extend the VRP formulation by
Fisher [1] to the case of multi depots as follows.

A graph G = (N, E) is defined by the set N
of its nodes and the set E of its edges. We also
define C = {1,...,N¢} : set of customers, N¢
: number of customers; D = {N¢ +1,...,N¢c +
Np} : set of depots, Np : number of depots;
N =1{1,...,Ne,Noc +1,...,N¢c + Np} . set
of nodes; kg : number of vehicles at depot d;
V= {1,...,k1,k§] +1,...,k —f—kz,...,K} : set
of vehicles, K = Zfzv 2, k¢ : number of vehicles; Q
: capacity of each vehicle; ¢; : quantity of goods
to be delivered to customer ¢; ¢;; : cost of direct
travel between node i and j i € C,j € N, ¢;; =
cj; for all 4,7 € C.

For S C C,let S = N\ S,d(S) = Yics i
and r(S) = [d(S)/Q], where [a] denotes the

problem (ULP) and the lower level problem (LLP) g a1lest integer not less than a. It is noted that
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r(S) stands for the minimal number of vehicles
that required to serve customers in set S, so as
to meet their demands.

Let y;;x = 1 if vehicle & € V uses the edge
(i,5) i € C,j € N,y = 0 otherwise. Since the
edge (7, 7) is undirected, Yijk and y;;x denote the
same variable. We also define
Y = {yijk | yijk = 0 or 1 and defines a K-tree

satisfying Z’]:d:kd_l-f.l SRS vingrap = 2ka, d €
D, (kO = 0)}7
where K-tree is defined to be a graph with N¢ +

Np + K edges spanning all nodes. Then the
problem is
N¢ Nc+Np K
min R= Z Z Zcijyijk (1)
yey i=1 j=i1+1 k=1
K Ng¢
s.t. Z Z Yijk = 2, 1€C (2)
k=1j=1

N¢ Nc
Zyipk - Zypjk =0, keV,peC(3)

K
Y3 wigk > 2r(S)

k=1i€S je§
VS C N¢ with |[S|>2  (4)

Constraint (2) imposes that each customer
has two edges incident on itself. It means that
each customer must be visited exactly once. This
constraint, however, does not necessarily imply
that visiting vehicle and leaving vehicle are iden-
tical. Thus we add constraints (3) for each vehi-
cle. Inequalities (4) denote the vehicle capacity
constraints. Since each vehicle must enter and
leave set S, we must have at least 2r(S) edges
between sets S and S.

If we set Np = 1, the above problem reduces
to a standard VRP studied in [1].

Formulation of ULP I

We assume that the number of depots and vehi-
cles to be set are given. We define additionally
P ={1,...,Np} : set of potential locations, Np
: number of potential locations; p;; : fixed cost
of placement of depot 7 to location j.

Let z;; = 1 if depot 4 is located at location

J, i = 0 otherwise. Then the problem is

Np Np
min  Z =) > pijzi + R(z) (5)
i=1j=1
Np
s.t. ZIL'”' =1, 1€D (6)
=1
Np
Yoz <1, jeP (7
i=1
l‘ijE{O,l}, 1e€D, jeP (8)

Formulation of ULP II

Let z;; = 1 if customer ¢ is assigned to depot j
and this means that customer i is served by the
distributer at depot j, x;; = 0 otherwise. Then
the problem is

N¢ Np
rrgn Z = Zl leijxij + R*(.’B) (9)
1=1 j=
Np
st. Y zi;=1, i€C (10)
j=1
zi; € {0,1}, te€C,j€D (11)

3 Computational Results

Branch and bound type solution method and
some computational results will be reported.
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