合成関数型最短経路問題のダイクストラ法による解法

01605236 長崎大学・教養部 丸山幸宏 MARUYAMA Yukihiro

有向グラフ G = (V, A) , 始点 1, 終点 N および各枝 $(i, j) \in A$ に枝長 t_{ij} が与えられた有向ネットワーク上の最短経路問題を考える。ただし経路の評価が、単一ではない様々な 2 項演算で枝長を結合した値で定義された問題:

$$\min_{n} [t_{1i} \circ (t_{ij} \bullet (\cdots \odot (t_{km} \diamond (t_{mN})) \cdots))]$$
 (1)

の解法を求めたい。問題 (1) で、 p は 1 から N への任意の道とする。また $t_{ij} \in S \subset R^1$ とし、各 2 項演算 $(a \circ x)$ は (x に関して) 単調非減少とする。

ここで $t_{1i} \circ x = f_{1i}(x), \ t_{ij} \bullet x = f_{ij}(x), \ldots, \ t_{km} \diamond x = f_{km}(x), \ t_{mN}(+x) = f_{mN}(x)$ とおくと経路の評価は

$$f_{1i}(f_{ij}(f_{jk}(\cdots(f_{mN}(x))\cdots))) = (f_{1i} \circ f_{ij} \circ f_{jk} \circ \cdots \circ f_{mN})(x)$$

と書ける。従って問題(1)は

$$\min_{n}[(f_{1i}\circ f_{ij}\circ f_{jk}\circ\cdots\circ f_{mN})(x)] \tag{2}$$

という問題に帰着される。このような問題を合成関数型最短経路問題と呼ぶことにする。 ただし問題 (2) における f_{ii} は集合 S から S への単調非減少関数とする。

注意1

問題 (1) 自身を解くためには 終点に至る枝 (m,N) において $t_{mN}=f_{mN}(x)$ (定数関数) とおけばよい。この場合、問題 (2) の各道の長さ(評価)は (x に依存せず)定数である。一方、終点に至る枝 (m,N) においてたとえば $t_{mN}+x=f_{mN}(x)$ とおけば、道の長さ(評価)は x の関数になる。このとき問題 (2) は、終点 N に着いたことで被る損失が x であるような問題、或いは 終点に至る枝の長さが t_{mN} から $t_{mN}+x$ に変化した問題と考えられる(したがって局所的だが、感度解析ができる)。

注意2

合成関数型問題には、もちろん単一の 2 項演算で道の長さ(評価)が定義された問題も含まれる。たとえば各 $i,j\in V$ で

- (a) 加法型: $t_{ij} \in S = R^1$, $f_{ij}(x) = t_{ij} + x$
- (b) Max \mathbb{Z} : $t_{ij} \in S = R^1$, $f_{ij}(x) = t_{ij} \vee x$
- (c) 乗法型: $t_{ij} \in S = (0, +\infty), \quad f_{ij}(x) = t_{ij} \times x$

と定義すると、問題 (2) は

$$\min_{n}[t_{1i}\circ t_{ij}\circ t_{jk}\cdots\circ t_{mN}\circ x]$$

となる。ただしo = +, V, \times である。

頂点 i から 終点 N への道 $p=(i,j,\ldots,j,k,\ldots,n,N)$ に含まれる閉路 $(j,j(1),j(2),\ldots,j(s),j)$ の 各 x における長さ $((f_{jj(1)}\circ f_{j(1)j(2)}\circ\cdots\circ f_{j(s)j})(x))$ を $C_p^j(x)$ と表す。このとき次が成立する。

命題1

ネットワーク G=(V,A) に含まれる閉路は全て $C_p^i(x) \geq id(x)$ ($\forall x \in S$) をみたすものとする。このとき任意の x において各頂点 i から終点 N への最短経路は単純路のなかに存在する。

命題 2

もし 任意の $i,j \in V$ に対して

$$f_{ij}(x) \ge id(x) \quad (\forall x \in S)$$
 (3)

ならば、ネットワーク G=(V,A) に含まれる閉路は全て $C_p^j(x) \geq id(x) \ (\forall x \in S)$ をみたす。

命題 1、 2 から、任意の $i,j \in V$ に対して $f_{ij}(x) \ge id(x)$ ($\forall x \in S$) ならば任意の x において各頂点 i から終点 N への最短経路は単純路のなかに存在することがわかる。

条件 (3) は、加法型では $t_{ij}+x\geq x$ ($\forall x\in S$) すなわち枝の長さが全て非負であることを意味する。その場合、ダイクストラ法が代表的なアルゴリズムとして知られている。そこで仮定 (3) の下、ダイクストラ法を用いて合成関数型最短経路問題を解く。以下で、A:=B は A を B で置き換えることを意味する。

ダイクストラ法

ステップ (0) 各 $x \in S$ において $V(x) = \emptyset$, $\Pi(N)(x) = id(x)$, $\Pi(i)(x) = I_{\infty} = \sup S$ $(i \neq N, I_{\infty} \notin S)$ とおく。

ステップ (1) $\Pi(k)(x) = \min_{i \notin V(x)} \Pi(i)(x)$ であるような節点 k(=k(x)) を選ぶ。この時、 $\overline{\Pi}(k)(x) := \Pi(k)(x), \ V(x) := V(x) \cup \{k\}$ とする。

ステップ (2) V(x) = V ならば計算終了。そうでない場合、ステップ (3) に行く。

ステップ (3) $l \notin V(x)$ であるような枝 (l,k) にたいして

$$\Pi(l)(x) := \min \left[\Pi(l)(x), f_{lk} \left(\overline{\Pi}(k)(x) \right) \right]$$

とおく。もし

$$\Pi(l)(x) > f_{lk}\left(\overline{\Pi}(k)(x)\right)$$

ならば、p(l)(x) := k とする。ステップ (1) に戻る。

終点での損失が x である問題で、各反復における節点 $i\in V$ は一時ラベル $\Pi(i)(x)$ か 永久ラベル $\overline{\Pi}(i)(x)$ が付される。また V(x) は永久ラベルを持つ節点からなる集合である。

定理

上記ダイクストラ法で得られる $\Pi(i)(x)$ $(i=1,2,\ldots,N)$ は(終点での損失がxである問題、或いは t_{mN} を $t_{mN}+x$ に変えた問題の)節点iから終点Nへの最短路長である。また、節点iから終点Nへの最短経路は

$$p = (i, p(i)(x), p(p(i)(x))(x), p(p(p(i)(x))(x))(x), \dots, N)$$

で構成される。ただし p(j)(x) $(j \in V)$ は計算終了後得られた節点とする。