Dual Axiomatization of the Core 01504620 東洋大学 船木由喜彦 FUNAKI Yukihiko ## 1. Dualization and Reduction Operators Let (N, v) be a cooperative n-person game in characteristic function form, where $N = \{1, 2, 3, ..., n\}$ $(n \ge 1)$ is the set of players and v is a characteristic function from 2^N to \mathcal{R} with $v(\emptyset) = 0$. A payoff vector of a game (N, v) is a function $x : N \mapsto \mathcal{R}$, and \mathcal{R}^N is the set of all payoff vectors of (N, v). For $x \in \mathcal{R}^N$ and $S \subseteq N$, we denote $x(S) = \sum_{i \in S} x_i$, and $x(\emptyset) = 0$. Let Γ^A be the set of all games (N, v) and $\Gamma \subseteq \Gamma^A$. A solution on Γ is a function Φ which associates with each game $(N, v) \in \Gamma$ a subset $\Phi(N, v)$ of \mathcal{R}^N . The core of (N, v) is defined by $C(N, v) = \{x \in X(N, v) | x(S) \ge v(S) \text{ for all } S \subset N\}$. Here the pre-imputation set for (N, v) is defined by $X(N, v) = \{x \in \mathcal{R}^N | x(N) = v(N) \}$. The anti-core of (N, v) is defined by $AC(N, v) = \{x \in X(N, v) | x(S) \le v(S) \text{ for all } S \subset N\}$. The dualization operator \mathbf{D} is an operator of a game $(N, v) \in \Gamma$ which associates with each game (N, v) a dual game $\mathbf{D}(N, v) = (N, \mathbf{D}v)$, where $\mathbf{D}v$ is given by $(\mathbf{D}v)(S) = v(N) - v(N \setminus S)$ for all $S \subseteq N$. The dual solution $\mathbf{D}\Phi(N, v)$ on $\mathbf{D}\Gamma$ of a solution $\Phi(N, v)$ on Γ is defined by $\mathbf{D}\Phi(N, v) = \Phi(N, \mathbf{D}v)$ for any $(N, v) \in \mathbf{D}\Gamma$. Definition 1 Let $x \in \mathbb{R}$ and $j \in \mathbb{N}$, where \mathbb{N} is the set of the natural numbers. The reduction operator $\mathbf{R}^{x,j}$ is an operator of a game $(N,v) \in \Gamma$ and a characteristic function v which associates with each game an (n-1)-person game $\mathbf{R}^{x,j}(N,v) = (N \setminus \{j\}, \mathbf{R}^{x,j}v)$ when $j \in \mathbb{N}$ and $n \geq 2$, or the original n-person game (N,v) when $j \notin \mathbb{N}$ or n = 1, where the characteristic function $\mathbf{R}^{x,j}v$ satisfies, if $j \in \mathbb{N}$ and $n \geq 2$, $(\mathbf{R}^{x,j}v)(\emptyset) = 0$ $(\mathbf{R}^{x,j}v)(\mathbb{N}\setminus\{j\}) = v(\mathbb{N}) - x$. We call $(\mathbb{N}\setminus\{j\}, \mathbf{R}^{x,j}v)$ a reduced game of (\mathbb{N},v) when $j \in \mathbb{N}$ and $n \geq 2$. ## 2. Axioms and Dual Axioms We extend the domain Γ of Φ to Γ^A by $\Phi(N,v)=\emptyset$ for any $(N,v)\in\Gamma^A\backslash\Gamma$. A propositional function p on $\{((N,v),Q)\mid (N,v)\in\Gamma^A,Q\subseteq\mathcal{R}^N\}$ to $\{0,1\}$ is introduced. We use \mathcal{P} as the set of all propositional functions. For a class of games Γ , we consider an equivalence relation \sim on $\mathcal{P}\colon p\sim \tilde{p}\iff p((N,v),Q)=\tilde{p}((N,v),Q)$ for all $(N,v)\in\Gamma$, any $Q\subseteq\mathcal{R}^N$. When we consider a solution Φ on Γ and we put $\Phi(N,v)$ into Q, we have a new equivalence relation \sim_{Φ} on $\mathcal{P}\colon p\sim_{\Phi} \tilde{p}\iff p((N,v),\Phi(N,v))=\tilde{p}((N,v),\Phi(N,v))$ for all $(N,v)\in\Gamma$. This equivalence relation \sim_{Φ} is coarser than \sim and depends on the class Γ and the solution Φ . When we pick one propositional function $\tilde{p}\in\mathcal{P}$, an equivalence class $E_{\tilde{p}}(\Gamma,\Phi)$ of \tilde{p} by \sim_{Φ} is called an axiom on Γ for Φ with respect to \tilde{p} . Moreover if $p((N,v),\Phi(N,v))=1$ for all $p\in E_{\tilde{p}}(\Gamma,\Phi)$, for all $(N,v)\in\Gamma$, we say that the solution Φ satisfies the axiom $E_{\tilde{p}}(\Gamma,\Phi)$ with respect to \tilde{p} . We define the *dual* of a propositional function p, $\mathbf{D}p$, by $\mathbf{D}p((N,v),Q) = p((N,\mathbf{D}v),Q)$ for all $(N,v) \in \Gamma^A$ and $Q \subseteq \mathcal{R}^N$. We call the equivalence class $E_{\mathbf{D}p}(\Gamma,\Psi)$ in \mathcal{P} the *dual axiom* on Γ for Ψ of $E_p(\Gamma,\Phi)$ with respect to p, and denote it by $\mathbf{D}E_p(\Gamma,\Psi)$. **Proposition 2** Let p be a propositional function. Then a solution Φ on Γ satisfies an axiom $E_p(\Gamma, \Phi)$ if and only if the dual solution $D\Phi$ satisfies the dual axiom $DE_p(D\Gamma, D\Phi)$. **AXIOM** PO(Γ , Φ) [Pareto optimality]: x(N) = v(N) for any $x \in \Phi(N, v)$ and (N, v) in Γ . **AXIOM** NE(Γ , Φ) [non-emptiness]: $\Phi(N, v) \neq \emptyset$ for any (N, v) in Γ . **AXIOM** IR(Γ , Φ) [individual rationality]: $x_i \geq v(\{i\})$ for all $i \in N$, for any $x \in \Phi(N, v)$ and $(N, v) \in \Gamma$. **AXIOM** DIR(Γ, Φ): $x_i \geq v(N) - v(N \setminus \{i\})$ for all $i \in N$, for any $x \in \Phi(N, v)$ and $(N, v) \in \Gamma$. **AXIOM** RGP(Γ , Φ) [reduced game property]: Let $\mathbf{R}^{x,j}$ be a reduction operator and Γ be a set of games which is closed for the operator $\mathbf{R}^{x,j}$ for any $x \in \mathcal{R}$ and $j \in \mathcal{N}$. For a game (N, v) in Γ , $n \geq 2$, $j \in N$, if $y \in \Phi(N, v)$, then $y|_{\mathcal{R}^{N\setminus\{j\}}} \in \Phi(N\setminus\{j\}, \mathbf{R}^{y_j,j}v)$, Proposition 3 Let $\Psi = \mathbf{D}\Phi$. If Φ satisfies $E_{rgp}(\Gamma, \Phi; \mathbf{R}^{x,j})$ (RGP(Γ, Φ) axiom given by a reduction operator $\mathbf{R}^{x,j}$), then Ψ satisfies $E_{rgp}(\mathbf{D}\Gamma, \Psi; \overline{\mathbf{R}^{x,j}})$ (RGP($\mathbf{D}\Gamma, \Psi$) axiom given by $\overline{\mathbf{R}^{x,j}}$), where $\overline{\mathbf{R}^{x,j}}v = \mathbf{D}(\mathbf{R}^{x,j}(\mathbf{D}v))$. ## 3. Dual Axiomatization of the Core **AXIOM** NE(Γ^C , Φ) [non-emptiness for Γ^C]: $\Phi(N, v) \neq \emptyset$ for any (N, v) in Γ^C where $\Gamma^C = \{(N, v) \in \Gamma^A | C(N, v) \neq \emptyset\}$. **AXIOM** IR' (Γ^{AC}, Φ) : $x_i \leq v(\{i\})$ for all $i \in N$, for any $x \in \Phi(N, v)$ and $(N, v) \in \Gamma^{AC}$. **Theorem 4 (Tadenuma)** The anti-core AC(N,v) on Γ^{AC} is the unique solution which satisfies axioms $PO(\Gamma^{AC}, \Phi)$, $NE(\Gamma^{AC}, \Phi)$, $IR'(\Gamma^{AC}, \Phi)$ and $RGP(\Gamma^{AC}, \Phi)$ with respect to the operator $\mathbf{R}^{x,j}v: (\mathbf{R}^{x,j}v)(S) = v(S \cup \{j\}) - x$ for any $S \subset N \setminus \{j\}, S \neq \emptyset$. The dual of the reduction operator of this RGP(Γ^{AC} , Φ) is, for $S \subset N \setminus \{j\}$, $S \neq \emptyset$, $(\overline{\mathbf{R}^{x,j}}v)(S) = v(S)$. The dual of axiom IR'(Γ^{AC} , Φ) is called UP(Γ^{AC} , Φ): **AXIOM** UP(Γ^{AC} , Φ) [upper boundness]: $x_i \leq v(N) - v(N \setminus \{i\})$ for all $i \in N$, for any $x \in \Phi(N, v)$ and $(N, v) \in \Gamma^{AC}$. **AXIOM** SGR(Γ^{AC} , Φ) [sub-grand rationality]: $x(N \setminus \{i\}) \ge v(N \setminus \{i\})$ for all $i \in N$, for any $x \in \Phi(N, v)$ and $(N, v) \in \Gamma^{AC}$. **Proposition 5** The core C(N, v) on Γ^C is the unique solution which satisfies axioms $PO(\Gamma^C, \Phi)$, $NE(\Gamma^C, \Phi)$, $UP(\Gamma^C, \Phi)$ (or $SGR(\Gamma^C, \Phi)$) and $RGP(\Gamma^C, \Phi)$ with respect to the operator $\mathbf{R}^{x,j}v$: $(\mathbf{R}^{x,j}v)(S) = v(S)$ for any $S \subset N \setminus \{j\}, S \neq \emptyset$.