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A New Approach for Weighted Constraint Satisfaction:
Theoretical and Computational Results
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1 Introduction

An instance of the binary Weighted Constraint
Satisfaction Problem (W-CSP) is defined by a
set of variables, their associated domains of val-
ues and a set of weighted binary constraints.
Our goal is to find an assignment which maxi-
mizes the weighted sum of satisfied constraints.
W-CSP is a generalization of combinatorial op-
timization problems such as MAX CUT.

Finding optimal solutions of W-CSP is
known to be computationally hard. Freuder
and Wallace [1] gave the first formal defini-
tion of PCSP which is a special case of W-CSP
having unit weights. They proposed a general
framework based on branch-and-bound."

Our work is motivated mainly by the po-
tential application of W-CSP in scheduling.
With the rapid increase in the speed of com-
puting and the growing need for efficiency in
scheduling, it becomes increasingly important
to explore ways of obtaining better schedules at
some extra computational.cost, short of going
all the way towards the usually futile attempt
of finding an optimal schedule. Qur paper de-
scribes a new approach meant to achieve this
goal. Another highlight of our approach is that
the solution obtained has a provable worst-case
bound. In a previous paper [3], we performed
a worst-case analysis of local search for PCSP,
and in this paper, we improve that result. The
knowledge of the worst-case performance gives
us some peace of mind: that our algorithm will
never perform embarrasingly poorly.

Our approach is heavily based on the no-
tion of randomized rounding, due to Raghavan
and Thompson [4]. The key idea is to formulate
a given optimization problem as a quadratic
integer program and solve a polynomial-time
solvable semidefinite program. Then treat the
optimal fractional solution of the semidefinite
program as a probability distribution and ob-
tain an integer solution using this distribution.
This approach yields a randomized algorithm.
which can be derandomized using the method
of conditional probabilities. Recently, Goemans
and Williamson applies a similar approach to
approximate MAX CUT [2]. Our experiments
illustrate that this approach can handle prob-
lem sizes beyond what enumerative search al-
gorithms can handle, and thus is a candidate
for solving real-world large-scale problems.
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2 Preliminaries

Let V = {1,...,n} be a set of variables.. Each
variable has a domain and for simplicity, we
assume that all domains have fixed size k and
are equal to the set K = {1,...,k}. A binary
constraint between two variables 7 and [ is a re-
lation over K x K which defines the pairs of val-
ues that 7 and ! can take simultaneously. Given
an assignment o : V — K, the constraint is
said to be satisfied iff the pair (0i,01) is an el-
ement of the relation. A W-CSP instance is
defined by a set V of variables, a collection M

.of constraints, integer k&, and a weight function

w: M — Z7%. Its output is an assignment
such that the weighted sum of satisfied con-
straints is maximized. Denote by W-CSP(k)
the class of instances with domain size &.

For each constraint j € M let w;, R;
and s; = ||R;||/k? denote its weight, relation
and strength respectively; let o; and B; de-
note the two variables connected by j; and let
¢j(u,v) = 1if (u,v) € R; and 0 otherwise. Let
s = Y ;emWjSj/ L e wj denote the strength
of a W-CSP instance. A W-CSP instance is
satisfiable iff there exists an assignment which
satisfies all constraints simultaneously.

We say that a maximization problem P can
be approrimated within 0 < € < 1 iff there ex-
ists a polynomial-time algorithm A such that
for all input instances y of P, A computes a so-
lution whose objective value is at least ¢ times
the optimal value of y (denoted OPT (y)). The
quantity € is commonly known as the perfor-
mance guarantee or approrimation ratio for P.

3 Theoretical Results

Linear-time Greedy Algorithm Suppose
we are given a n by k probability matrix
II = (piu) such that all p;, € [0..1] and
E,’j:lpi,n = 1forall <: < n If we
assign each variable 1 independently to value
u with probability p;,, then the expected
weight of the resulting assignment is given

by W = Z wy ( Z Pa,.u " P ’Cj(u’v)> '
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The method of conditional probabilities speci-
fies that there must exist an assignment whose



weight is at least W and such an assignment can
be found deterministically via greedy in linear
time. Now consider the random assignment,
ie. p;x = 1/k for all i,k. By linearity of ex-
pectation, we can show that:

Theorem 3.1. W-CSP(k) can be approxi-
mated within absolute ratio s in O(mk?) time.

Next, we will consider two types of round-
ing of semidefinite programs and analyse their
respective worst-case performances.

Simple Rounding Formulate an instance of
W-CSP(k) by a Quadratic Integer Program

(Q):
Q': maximize Z wjfj'-(a:)

JEM '
subject to Z ZoTiy =—(k—2) forieV
:r,uE{ 1 +1}forzEV ue K
zg = +1
where .
f]I (I) = %E cj(u,v) (l =+ I()-‘Eaj_u) (1 + IC().’B/;J,_,,)
ua

encodes the satisfiability of constraint j.

Interpret each variable z as a 1-dimensional
vector of unit length and relax it to a unit-
vector X lying in the sphere Sy where N =
nk + 1. The notation A - B means the inner
product of vectors A and B. The resulting re-
laxation problem (P) is the following:

P: maximize Z w; F(X)
JEM
subject to Z Xo-X

vEK )
X0, Xin €Sy forieV,ue K

—(k—-2) forieV

where Fj(X) = 42 ci(u,v) (14 Xaj - Xp; »t

u,

XO N Xaj,u + XO . Xﬁ,'.v)-

We propose the following randomized algo-

rithm to approximate (Q') for k = 2:

1. (Relaxation) Solve (P) to optimality and
obtain an optimal set of vectors X*.

2. (Randomized Rounding) Construct a cor-

responding assignmernt for (Q') as fol-
lows. - For each 7, with probability 1 —

X5 X!
it-c—cfi(—————_—l, assign z;, to +1 and z;,
(v # u) to —1.
For the case of k = 3, we can show by

adding valid inequalities that it reduces to the
case of k = 2.

Theorem 3.2. W-CSP(k) (k£ < 3)‘can be ap-
proximated within 0.408.

Rounding Via Hyperplane Partitioning
Adopting a rounding schemne in the veins of
Goemans and Williamson [2], we can improve
the approximation ratio for kA = 2:

Theorem 3.3. W-CSP(‘Z') can be approx.
within 0.634, and 0.878 for satisfiable instances.

4 Computational Experience

In this section, we report our computational
experience. We experiment on satisfiable in-
stances so that we can compute the approxi-
mation ratio without having to obtain optlmal
solutions.

Four algorithms are compared. Greedy LS
refers to hill-climbing local search with an ini-
tial assignment generated greedily, ie. ar-
range the variables in a linear order and assign
them in sequence the value that maximizes the
weighted sum of satisfied constraints. Random
LS refers to hill-climbing local search with a
random initial assignment. Rand Round refers
to our simple. roundmg algorithm, and RR LS
refers to hill-climbing local search with an ini-
tial assignment generated by Rand Round.

Our experiments yield these observations:

1. Greedy LS performs well on dense in-
stances, but not so well on sparse ones.

2. Random LS performs reasonably well on
sparse instances but not -on dense in-
stances.

3.  Rand Round performs cousistently well on
all instances, achieving at least 97% opti-
mality for & = 2 and 86% optimality for
k = 5. Rand Round outperforms Greedy LS
and Random LS for k = 5.

4. RR LS outperforms all other approaches in
all cases, achieving 99% optimality for k =
2 and 96% optimality for £ = 5.
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