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Experimental analysis of a semidefinite programming approach
to the graph partitioning problem
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1 Introduction

There has been much interest in semidefinite pro-
gramming (SDP). The objective of our study is to
analyze the power and the applicability of SDP ap-
proaches to combinatorial optimization via extensive
computational experiments. The SDP is important
not only because it is solvable in polynomial time by
an interior point or ellipsoid algorithm (see, for ex-
ample, Kojima’'s tutorial paper in this issue) but also
because it leads to tighter relaxations than classical
linear programming relaxations.

Recently, Goemans and Williamson [2] derived an
approximation algorithm for MAX CUT using the
SDP relaxation whose worst case ratio is much bet-
ter than the previously known bound. We apply the
same technique to the following problem.

(Graph Partitioning Problem: GPP)

Given a complete undirected graph G = (V, E). As-
sociated with an edge (i,j) € E, there exists a non-
negative weightc;;. Assume that |V|is an even num-
ber and let n = |V|. A partition of V is a pair (L, R)
of vertex sets such that LN R=0and LUR = V.
A partition (L, R) of V is called uniform when ILI
|R| = n/2. Then the objective of the problem is to
find a uniform partition (L, R) of V that minimizes
¢(L,R) =3 cLjer Cis-

The GPP used as a test bed to investigate the
power of metaheuristics [1, 3]. Johnson et al. [3]
provided benchmark instances on which some heuris-
tics have been compared via extensive computati-
ional experiments; they showed Kernighan and Lin’s
heuristic (KL) [4] works well on geometric (struc-
tured) problems but the simulated annealing (SA)
gives better solutions than KL on random graphs if
much computational time is allowed. The authors (1)

showed that a variant of tabu search that we call the
life span method (LSM: see, for example, Kubo’s tu-

torial paper in this issue) beats both SA and KL on
random and geometric graphs.

The organization of the rest of the paper is as fol-
lows. Section 2 gives two SDP formulations of the
GPP. Based on a SDP relaxation, we derive an ap-
proximate algorithm for the GPP in Section 3. In
Section 4, we compare the algorithm derived in Sec-
tion 3 with the LSM via computational experiments.
Final section gives some open problems.

2 Formulations

Let y = (yi;) € R*(*~1)/2 be the edge incidence vec-
tor of the uniform partition defined by

[ 1 i<ji€eL,jERori€R,EL
Yi=1 0 otherwise.
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Then the edge formulation of the GPP is

min D oicj CiiYis
s.t. YiciVij =nt/4 ()
43 i¢; 05y < (2 a:)®  for a € R (3)
yi; € {0,1} fori<j (4)

The inequalities (3) can be derived by the inequality
4(Zi€L a,-)(ZiER a;) < (Ziev a;)? for any partition
(L, R) of V, and be rewritten by the semidefinite con-
straint

1
57 —Y 0 (5)

where J denotes the all 1’s matrix and Y denotes the
n X n symmetric matrix with zero diagonal and ¢j

and ji entries y;;.

By replacing the constraints (4) with 0 < y;; <1
for ¢ < j, we derive a semidefinite programming re-
laxation of the GPP that can be further strengthened
by adding the linear inequalities
(6)

Yij +yik +yje <2 fore, gk

and

Yi; — Yik — Yjk SO for ivj:k (7)
We denote this relaxtion by (P).
Let z = (z;) € R™ be the vertex incidence vector

of the uniform partition defined by

. 1 7€l
T“"{—l i€R. (8)
Then the vertex formulation of the GPP is
min %ZKI c,-j(l - :l:,':l:j)
s.t. Zi z; = 0 (9)
z; € {-1,1} for 1. (10)

Note that for any incidence vectors z and y, z;z;/2 =
1/2 — y;; holds.

By replacing one dimensional vector z; with n-
dimensional vector v; of unit norm, we derive the
relaxtion

min %Zi<jcij(1 v; - vj)
s.t. Y;vi=0
floill = 1

where v; - v; represents the inner (dot) product.

(1)
(12)

for 1
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By replacing v; - v; with &;;, we derive another
semidefinite relaxation of the GPP

min %ij cij (1= &;j)

s.t. Zi &ij = —n/2 (13)
20 (14)
éii =1 for 1. (15)

Note that (13) and (14) correspond to (2) and (5),

respectively, and a symmetric positive semidefinite

matrix = = (§;;) with &; = 1 corresponds to a set
of vectors v;,1 € V satisfying (12). Note also that
the dual of the above SDP leads to the (min-max)
eigenvalue bound [5].

3 The randomized algorithm

Using the SDP relaxation, we derive the following
randomized approximate algorithm for the GPP.

Step 1: Solve (P). Let the optimal solution be Y =
(w5)-

Step 2: Using a Cholesky decomposition, find a ma-
trix V such that VTV = (3J - Y).

Step 3: Choose a hyperplane through the origin. If
the column vector v; of V lies above the plane,
then vertex 7 is in L; otherwise vertex ¢ is in R.

4 Computational experiments

We test the randomized algorithm derived in Sec-
tion 3 on the standard test problems available from
DIMACS (ftp.dimacs.rutgers.edu in the directory /DSJ)
and TSPLIB problems, and then compare it with
the LSM. Developing the LSM for MAX CUT and
then comparing with Goemans and Williamson’s al-
gorithm would be of interest. Results of computa-
tional experiments will be reported in talk.

5 Conclusion

We demonstrate the applicability of the semidefinite
programming to the graph partitioning problem. It
will be of value to apply the similar technique to
the stable set problem and the quadratic assignment
problem because both problems have tight relaxations
that are natually formulated as semidefinite program-
ming. We can also derive the following (semidefi-
nite) cut for the n-city asymmetric traveling salesman

problem (n > 3):
4Zbibj$ij S (Zb,)g for b € %_’;_

i i
Z a;a;zij — Zaialx“ < cos %(Z a;)?  for a € R".
il i i

Analyzing the strength of these constraints is an in-
teresting open problem.

Remark 1 (P) can be solved by a cutting-plane method.

The identification problem of the semidefinite con-
straints (5) is reduced to finding the minimum eigen-
value of %J — Y, if the eigenvalue is negative, the
corresponding eigenvector a induces a cut (3).

Remark 2 Since the vector v obtained by the above
algorithm always satisfies Ziev v; = 0, any hyper-
plane through the origin derives a uniform partition;
so repeated trials of the randomized algorithm may
give better solutions.

Remark 3 Using the tighter inequalities than (3)
such as gap inequalities or hypermetric inequalities
[5], we can derive tighter relaxations that may lead
to better approximate solutions. But, unfortunately,
the identification of the gap inequality is N P-hard
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