OPTIMAL STOPPING GAMES FOR BIVARIATE UNIFORM DISTRIBUTION

名框商科大 坂口 実 (Minoru SAKAGUCHI)

Abstract We consider a class of two-person time-sequential games called optimal stopping games. Let (X_{ℓ}, Y_{ℓ}) , $i=1, \dots, n$, be an iid sequence of $r.v.^2s$ sampled from bivariate uniform distribution on [0, 1]. At each time $i=1,2, \dots$, each of two players I and II is dealt with a hand X_{ℓ} and Y_{ℓ} , respectively. After looking at his hand privately, each player can then choose either to accept (A) his hand or to reject (R) it. If the players' choice pair is A-A, then the game ends with the predetermined payoffs to the players. If the choices are R-R, then the current sample is rejected and the game continues to facing a next sample $(X_{\ell+1}, Y_{\ell+1})$. If the choices are A-R(R-A)then a lottery is used to the effect that either A-A or R-R is enforced to the players with probability p_1 , (p_2) and $\overline{p_1}$, $(\overline{p_2})$, respectively, where $\overline{p_{\ell}} = 1 - |\gamma_{\ell}|$. Each player wants to maximize his expected payoff at the termination time of the game. We explicitly derive the solutions of (1) zero-sum game, where the terminal payoffs are $E(X_{\tau}) - E(Y_{\tau})$, where τ is the time at which the game is stopped.

§3の子を抱意だする.
$$\{(Xi,Yi)\}_{i=1}^{n} \quad \text{is iid with bivariate uniform with } pdf$$

$$f(x,y)=1+\gamma(1-2x)(1-2y), \quad (x,y)\in [0,1]^2, \quad |x|\leq 1.$$

I(II) observes X=x(Y=y) privately. If the choice-pair A-R[R-A] is chosen, then lottery (A-A, R-R; p_1 , $\overline{p_1}$)[(A-A, R-R; p_2 , $\overline{p_2}$)] is performed. OE is

where

eq. pval
$$[A'(x,y), A'(x,y)] = eq. val [M'(a, \beta), M'(a, \beta)]$$
.

and

$$M^{i}(A, \beta) \equiv E(A(X), \overline{A(X)}) A^{i}(X, Y) \left[\frac{\beta(Y)}{\beta(Y)}\right]^{2}, \qquad i = 1, 2.$$

Eq. strategy-pair at the first stage is to (accept X iff $X > u_{n-1}$)-(accept Y iff $Y > v_{n-1}$), where (u_{n-1}, v_{n-1}) is determined by a simultaneous recursion.

It is shown that in the special case of $P_1=P_2=P_1$, we obtain $U_n=V_n$ for all n, and if V=D additionally, then U_n converges, as $n\to\infty$, to a unique root U_{∞} in [0,1] of the equation $(2p-1)u^2+(2-p)u-1=0$. Moreover we obtain in case of P=V=0, a two-person non-zero-sum-game version of the well-known Mosen's sequence of numbers $V_n=\frac{1}{2}(1+V_{n-1})$. That is, $U_n=U_{n-1}+\frac{1}{2}(1-U_{n-1})^3$ $(n\geq 1)$; $U_0=0$)

Theorem 2. For the non-zero-sum sequential game $G(n, p_1, p_2)$ over bivariate uniform distribution (3.1) with $0 \le \gamma \le 1$, the equilibrium values (u_n, v_n) satisfy the recurrence relation

(3.3a)
$$y_n = a + \frac{1}{2}(1 - \overline{p}_1 b) \overline{a}^2 - p_2 \overline{b} \overline{a}^2 + \gamma b \overline{b} \left\{ \frac{1}{6} \overline{p}_1 + \left(\frac{1}{2} \overline{a}^2 - \frac{1}{3} \overline{a}^3 \right) \Delta \right\}$$

(3.3b)
$$\sqrt{n} = b + \frac{1}{2} \left(\left(-\overline{P_2} \alpha \right) \overline{b}^2 - \overline{P_1} \overline{a} \overline{b}^2 \right) + \sqrt{\alpha} \overline{a} \left\{ \frac{1}{b} \overline{P_2} + \left(\frac{1}{2} b^2 - \frac{1}{3} b^3 \right) \Delta \right\}$$

$$\left(n = 1, 2, \dots ; u_0 = v_0 \equiv 0, a_0 = b_0 = 0 \right)$$

with a and b replaced by u_{n-1} and v_{n-1} , respectively. The equilibrium strategy-pair at the first stage is

(3.4a)
$$d^*(x) = 0$$
, if $x < u_{n-1}$; =1, if $x > u_{n-1}$

(3.4b)
$$\beta^*(y) = 0$$
, if $y < v_{i-1}$; = 1, if $y > v_{i-1}$.

「大けん」 [4] L. Moser, On a problem of Cayley, Scripta Math. 22(1956), 289-292.

[5] V. V. Mazalov, A game related to optimal stopping of two sequences of independent random variables having different distributions (to appear).

[6] M. Sakaguchi, A simplified two-person multistage poker with optional stopping, Math. Japonica 28(1983), 287-303.

[7] ———, On two and three person exchange games, Math. Japonica 38(1993), 791-801.

[8] ————, Information structure and perfect information in simple exchange games, to appear in Intern. Year Book. Game Theory and Applications, 2(1994).

[9] ———, and S. Sakai, Multistage poker with random amount of bets, Math. Japonica 37(1992), 827-838.