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OPTIMAL STOPPING GAMES FOR BIVARIATE
UNIFORM DISTRIBUTION

%tZBHEL the # (Minou SAKAGUCHI)

Abstract We consider a class of two-person time-sequential games called
optimal stopping games. Let (X, I}), i=1, -, n, be an iid sequence of r.v.1s
sampled from bivariate uniform distribution on [0, 1]. At each time i=1,2, ---, each
of two players I and Il is dealt with a hand X and ¥; , respectively. After looking
at his hand privately, each player can then choose either to accept (A) his hand or
to reject (R) it. If the players’ choice pair is A-A, then the game ends with the
predetermined payoffs to the players. If the choices are R-R, then the current
sample is rejected and the game continues to facing a next sample (Xegy Yoy) It
the choices are A-R(R-A)then a lottery is used to the effect that either A—A or R—
R is enforced to the players with probability p, (po) and p, (p, ), respectively,
where p; = |[—F; -. Each player wants to maximize his expected payoff at the
termination time of the game. We explicitly derive the solutions of (1) zero-sum
game, where the terminal payoff to I is Xx—Yt, (2) non-zero-sum game, where the
terminal payoffs are E(X; )-E(Y.), where Tis the time at which the game is
stopped.
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I(IT) observes X=x(Y=y) privately. If the choice-pair A-R[R-A] is chosen, then
lottery (A-A, R-R; Pr s ﬁ M(A-A,R-R;  p., B )lisperformed. OEis
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o Theorem 2. For the non-zero-sum sequential game G-(m, P, P, over
bivariate uniform distribution (3.1) with 0S¥ s | , the equilibrium values
(un,vn")  satisfy the recurrence relation
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with a and b replaced by U,_, and V;,_ | » respectively.
The equilibrium strategy-pair at the first stage is -
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