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The relation between the game theory and the
combinatorial optimization theory has been exten-
sively discussed. For example, according to the
result of Shapley and Edmonds, any convex game
is equivalent to a polymatroid. Here we are in-
terested in another way. If the core of a game
is empty, how is it related to combinatorial the-

ory? How shall we characterize and research those

games?

This paper denote a game by G = (N, ¢), where
N is the player set, and ¢ is the characteristic
function. Usually we use 7 to represent a general
player in N. This paper assumes that ¢ is a non-
decreasing function. That is, for any : € S C N,
c(S — {i}) < ¢(S). Furthermore, we suppose
¢(0) = 0. For fundamental terminology, such as
imputation, core, convex game, 7-value see [2].

1 Base and Cut

Definition 1.1 For a subset S C N, if ¢(S) =
c(N), we call S a spanning set of G (or N ).

Definition 1.2 Given a subset S C N, if ¢(T) <
c(S) for any proper subset T C S, then S is called
independent.

Let 7 be the family of all independent sets.

Definition 1.3 We call a player i € N null
player if for all S C N — {i}, ¢(SU {z}) = ¢(S).

Theorem 1.1 For a conver game without null
player, the only spanning set of N is N itself.

Definition 1.4 A subset B C N ts called a base
of G (or N ) if B is a spanning set of G and every
proper subset of B is not a spanning set of G.

Let B be the family of all bases.

Theorem 1.2 If the core of G core(G) is not
empty, then for any imputation * € core(G),
z(i1) = 0 if there ezits a base B C N — {1}.
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Definition 1.5 Fora set SC N, a subsetT C S
is-called a cut of S 1f ¢(S—T) < ¢(S). T is called
e minimal cut if any proper subset of T is not a
cut. Especially, if T consists of a single player 1,
then 1 is called a bridge of S.

Theorem 1.3 Let D be the set of all bridges of
N. If ¢(G) > 0 then core(G) # 0 only if D # 0.
Furthermore, by then z(D) = z(N) for any z €
core(G).

Definition 1.6 Let S C N. For any setT C S,
let cs(T) = ¢(TU(N —S)). Then a new game
(S,cs) is called the restricted game of G on S.

Theorem 1.4 Let D be the set of all bridges of
N and D # 0. Then core(G) # 0 if and only if
core(D,cp) # 0.

From the above definitions, we know that
empty-core games share many properties with
graphs. See Section 3.

2 Generalized Core and Gener-

alized 7-Value

Definition 2.1 An vector z € R"™ s called an

generalized imputation if the following conditions

are satisfied.

1) (Generalized Individually Rationality)
2; > min{c(i), c(V) - o(N — {i})};

2) (Efficiency) 3oy zi = c(N).

Note that if z is a imputation then z(z) > ¢(7).
Therefore imputation is a special case of general-
ized imputation.

Definition 2.2 The set of all generalized impu-
tation = which satisfy condition 3) is called gener-
alized core.

3) If there is a subset S C N such that z(S) < ¢(S)
then z(T) < ¢(T') holds for any subset T C N with
IT|=|N|-1.
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It is easy to check that generalized core con-
tains core for any game. Furthermore, the follow-
ing theorem shows that many empty-core games
have nonempty generalized core.

Theorem 2.1 If YV (e(N) = e(V = {i})) <
c(N), then the generalized core is nonempty.

Definition 2.3 In game (N,c), two vectors A
and B € RV are defined as follows: for alli € N,

A(i) = c(N) — (N - {3}),

B(i) = B {C(S) - > A(k)} :

keS—{i}

Recall that vectors A and B are the lower bound
and upper bound in the definition of 7-value. We
claim that the 7-value can be also applied to the
case that B < A.

Definition 2.4 If A < B or B < A then the gen-
eralized 7-value is defined as 7 = Ab+ (1 — \)B,
when X € [0,1] is defined by the property 3, 7(i) =
¢(N).

Theorem 2.2
If the generalized core is nonempty, then either

A>BorB2>A.

3 Application

As an application, we investigate some games
related to reliability theory. In reliability theory,
how to measure the component importance is an
important problem. Given a network system, rep-
resented by a connected graph GRAPH(V,FE),
where V' is the vertex set and F is the edge set
where each edge may fail. This system works
if and only if all vertices in V are connected by
working edges. [3] defines a cooperative game by
considering every edge of E as a player (i.e., let
V = F). For any subset SC N = F ¢(S) =1 if
S is a spanning set of F, otherwise ¢(S) = 0. In
this way, almost all games have empty cores. Fur-
thermore, the base (resp. cut, bridge) of a game
(Section 1) corresponds to the base (resp. cut,
bridge) of the related graph. On the other way,
the famous Barlow-Proschan importance measure
[1] for the graph is the Shapley value of the game.

There exists a problem from the view point of
computation complexity.

Theorem 3.1 Computing Barlow and Proschan

measure 1s #P-complete, with respect to theinput
length |N|.

Therefore we now try to use the 7-value to mea-
sure the component importance. Since the games
related to network system are usually with empty-
core, we consider the generalized 7-value of Defini-
tion 2.4. Furthermore, it can be used to a weighted
network in the following way.

We construct a game G” = (N,c") from a
weighted network GRAPH(V,N,w). For any
subset S C N, w(S) = Y ;csw(i). Then define
the characteristic function ¢” of game G” by

C-T(S) — { Ow(S) - w(BS)

where w(Bgs) is the weight of minimal spanning
tree of S.

if S is a spanning set

otherwise

Definition 3.1 The generalized 7-value for a
game (E,c") according to Definition 3.4 is called
T-measure for the components in a system.

According to Theorem 2.1 and 2.2, the -
measure can be applied to many network systems.
Furthermore, the computation of 7-measure is in
P. In fact, the computation of A is evidently easy.
In order to compute B, let T; be a spanning tree
of GRAPH(V, FE) containing 7 with the least pos-
sible weight. T; can be found by the greedy algo-
rithm, starting from 7 and adding one edge each
time with the least weight while keeping being a
tree.

Theorem 3.2

> Alk).

keT;—{i}
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