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A Refined Diffusion Approximation for
Finite-Capacity Multi-Server Queues
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1 Introduction

Queues with finite waiting spaces have been
useful models of computer, communication and
manufacturing systems experiencing congestion
due to irregular flows. The limited waiting room
corresponds to a local storage or buffer for wait-
ing customers (i.e., jobs, packets, transactions,
etc.). In particular, the local storage at a work
station in a flexible manufacturing system (FMS)
typically has a small number of waiting spaces.
The FMS work station also typically has a set of
parallel machines with generally distributed pro-
cessing times, and hence it can be adequately
modeled as a finite-capacity GI/G/s queue. In
this paper, we develop and evaluate a refined
diffusion approximation for the GI/G/s/s+r
queue, which is consistent with the exact results
for the M/G/s/s and M/M/s/s+r queues.

2 Basic Assumptions on the Diffusion
Model

The GI/G/s/s+r queueing system we consid-
er is specified by the following assumptions:
Let F (G) denote the interarrival-time (service-
time) cumulative distribution function (CDF)
with mean A~! (u~1), and let ¢2 (c?) be the
squared coefficient of variation (SCv, i.e., vari-
ance divided by the square of the mean) of F
(G). Let p = A/sp be the traffic intensity and
assume that the system is in steady state. In ad-
dition, let A(t), D(t) and L(t) denote the cumu-
lative numbers of arrivals, departures (not count-
ing lost customers) and lost customers during the
time interval (0, t], respectively. Then, the num-
ber of customers at time ¢t (> 0), say N(t), can
be represented as

N(t) = N(0)+ A(t)— D(t) — L(¢t), t=>0.(1)
The fundamental idea of diffusion approxima-
tions for finite-capacity queues is to approximate
the discrete-valued process {N(t); ¢ > 0} by an
appropriate time-homogeneous diffusion process
{X(t); t > 0} on a finite subset of R} = [0, 0),

utilizing asymptotic properties of the counting
processes A(+), D(-) and L(-) in (1).

We use the generic random variable N (N7)
to indicate the number of customers in the sys-
tem at an arbitrary time (just before an arrival
epoch) in equilibrium. For k = 0,...,s +r, let
pr = P(N =k) and m, = P(N~ = k).

A first step of the diffusion modeling is to de-
fine an interval Z; of Ry corresponding to the
event {N =k} (k=0,...,s+ 7). We suggest
using the set of intervals defined by

Ikz{{o}) k=0

(zh—-1,zk), k=1,...,8+7r

for an increasing sequence 0 = zg < z; < -+ <
Zs4r. Toregulate the process X(+) in the interval
[0, z54,), we assume that each of the boundaries
is reflecting.

Let dX(7) = X(r) — X(0) for 7 > 0. Then,
apart from the boundary behavior, the diffusion
process X (-) can be characterized by the limits

b@p:ggémanﬂ|xmy=ﬂ
o(s) = lim = BU{aX(r)}* | X(0) = a]

for £ > 0. Taking account of the natural corre-
spondence between the event {N = k} and the
interval Z, (k = 1,...,s + r), we assume that
each of these parameters is piecewise constant,
te,forz € (k=1,...,s+r),

b(z) =br and a(z) = ax,

where {bg; £ > 1} and {ak; k¥ > 1} are bounded
sequences and a; > 0 for all k.

3 General Distribution Form

Using a pointwise discretization method [1] de-
veloped for the case r = 0o, we can express {pr}
as

pk=p06k, k=0,...,.§'+7‘-—1, (2)

for a sequence {&k} specified by {bx}, {ar} and
{zr}. To express the probabilities pg and ps4r
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in terms of {{x}, we use a rate conservation law
as follows: Since the average rate of accepted
arrivals equals the average departure rate (not
counting lost customers), we have

A1 = 7e4r) = pE[min(N, s)],

from which 7,4, can be written as

7rs+r=%{P—1+p0§ (1— —) Ek}

k=0
To obtain an approximation for psi., we uti-
lize an exact result for the GI/M/s/s+r queue,
namely,
Ts+r = ZPs+rs (3)
where the coefficient z is given by

$(sp)

p(L—o(sp))’

and ¢(-) denotes the LST of the cDF F. In
this paper, we use the formula (3) for the
GI/M/s/s+r queue as an approximation for
the GI/G/s/s+r queue. In particular, for the
M/G/s/s+r queue, we see that this approxima-
tion, z = 1, is correct because of the PASTA prop-
erty. Substituting (2) and ps4» = ms4-/2 into the
normalizing condition E‘”” pr = 1, we obtain

z=

_ plz—1)+1
po—s—l s4r—1 '
Z(PZ+1——)€L+PZ PR
k=0 k=s

4 Diffusion Approximation with Con-
sistent Discretization

Here we summarize the final results for {p;}:
( Pk, k=1,...
pobspt 0, k=

,§—1

LSs+r—1

Pk = 1 s—1 ]
—<p—1+ 1—=)¢;
oz p pOjgo ( S) & ps
\ k=s+r,
where the empty probability pg is given by
( plz—1)+1
s—1 k - ﬁr
(pz-i—l——)fk'*' —pz€s
k=0 1-p
Po = < p#1
z
s—1 o p=1
k
(z+1 —-—) & +12&5
\ k=0

aj
a
Ek——H(*J sp) ) k=1,...,S,

]l]

and

ap=A+kp, k=1,...,s

The infinitesimal variance {a;} is given by

A2 + kp, k=1,...,s—1
o =4 A2+ k{22 + (1= A, (10)}

=S’

where
o o]
2, (s1M) = 23#/ (1-G.()) dt -1,
0

and G, is the stationary-excess CDF associated
with the service-time CDF G, i.e.,

= p/(; {1-G(u)}du, t>0.

The parameter o (kK = 1,...,s) is defined by
ar = aj/ar and p = p*. See Kimura [2] for
details.

Using the approximate distribution {py}, we
can derive approximation formulas for some con-
gestion measures in the GI/G/s/s+r queue: Let
Q = max(N —s,0) be the queue length excluding
customers in service, and let W denote the wait-
ing time of a customer who is allowed to enter
the system. Then, the mean queue length is

j i1 s
Pom{l - P T(l p)p }fs
ElQl = + TPstrs p#1
1
EPO"'("' - 1)&3 + TPs4r, p=1

By virtue of Little’s formula, the mean waiting
time E[W] can be derived from F[Q] as

__ E[Q]
BW) = 35—y
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