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The fundamental period of a G/SM/1 queue
Fumiaki Machihara NTT Telecommunication Networks Laboratories

1. Introduction

We study the fundamental period of a PH-MR/SM/1 queue with a phase-type Markov
renewal input and semi-Markovian services. The LST (Laplace-Stieltjes transform) of the
fundamental period distribution has been obtained as a matrix-exponential form for a PH-MR/GI/1
queue with i.i.d. services [1, 2]. Lucantoni-Neuts recently generalized this result to a PH-
MR/SM/1 queue[3], but its form does not seem to be suitable for computation. In this report, we
give a different form for the LST of the fundamental period distribution. This form is more
tractable for computation than Lucantoni-Neuts'.

2. Queueing Model and the Fundamental Period

We consider the G/SM/1 queueing model characterized as follows:

(a) The service times of successive customers form an irreducible semi-Markov process
with m, possible states. Given that a service starts in state i, its service time follows distribution

Hi(x). Just after service completion, the state jumps from i to j with probability hi" where H = (hij)
and the succeeding service time follows distribution Hj(x). The service time distribution is given
by H(x) = (Hi(x)hij)' Suppose that when a system becomes empty in service state i i =1, -+, ml)',

the next service begins in the same service state i.
(b) The arrival process is a phase-type Markov renewal process (or a Markovian Arrival
Process) with m, phase states and the interarrival time density is given by

f(x) = & exp(Tx) T, | (1)
where o, T and 10 respectively have the n X m,, m, X m, and m, X n matrix forms. Between

successive arrivals, the fluctuation of m, states follows a Markov process with the infinitesimal

generator T. We call these states "arrival phase states.” The arrival process and the service times
are mutually independent. ,
We assume that the service discipline is non-preemptive. We now consider the embedded

Markov renewal process at departure epochs. Define 1, to be the [-th departure epochs of
customers from the system, with 1, =0, and @l’ I,, J) to be the number of customers in the system,

the service state and the arrival phase state at T+, immediately after . Then (&l s 3T - )
is a semi-Markov process in the state space {(i, j, k):i120,15jS m,, 1 ks mz). This process is
positive recurrent when the traffic intensity p = A/u < 1, where u'l and A1 are the mean service
time and mean interarrival time. Now, we assume p < 1. We define level i to be the set of states
{G,j,k):1 2jSm,, 1 SkSm,}, 120. The states of level i are ordered lexicographically, that is,
Gg,1, D, -, G, 1, mz), G2, 0, -, 3,2, m2), -, (1, m,, 1), -, G4, m,, m2). We call these m,m,
states "service-arrival states (of level i)."

Let us consider a service completion epoch 7, at which the number of customers becomes

level i4+2 from level i+1. We now study the first passage time from level i+1 to level i (i =0, 1, -).
Let G.. (x; i+1) be the probability that the first passage from state (i+1, j) to state (i, j') occurs no
later tIlljan time x, and that (i, j') is the first state visited in level i, where i 2 0, j and j' are
lexicographically ordered service-arrival states, 1 < j, j' < m;ym,. Note that ij. (x; 1+1) is
independent of i > 0. The Laplace-Stieltjes transform G*(s) of

G(x) = (G, (x,i+1)) (1 <j,j'<Sm; m,)
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is given by [3]

G*0= | @0 ® L) exp{(-sl+ I,® T+ (I, ® T%0)G*(s)) x}, @)
0
where Ii is m, X m, indentity matrix (i = 1, 2).

This matrix-exponential form is the simple extension of the result for the i.i.d. service queue ([1],
[2]). What is the difference between the cases in which H(x) has the matrix form (semi-Markovian
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service case) and H(x) has just a scalar form (i.i.d. service case)? In the latter, I, is scalar and we

can simply substitute sI - T - T?aG™(s) into the variable w of the LST H*(w) of H(t). However,
when H(x) has the matrix form, we have to directly compute the matrix-integration. Now, we will
give the simpler form than Eq. (2).

Theorem The LST of the fundamental period length distribution is given by
G*(s)=(G*(s; Phyy) (1 55,§ <my, 3)
where

G*(s;J) = (h; ® L) Or dH,(x) exp{(-sI+ I, ® T + (1, ® TG (s)x} (¢; ® L). (4)

for flj =(hy by ).
Proof Let us assume that the service state at T, + (just after 7,) is j. Let G(x; j) (m, X m,

matrix) denote the fundamental period length distribution given that the service state at T, + is j.

Now, we shall consider that the service displine is LIFO (Last-In-First-Out) preemption during the
considering fundamental period. Note that the fundamental period length remains unaltered for
any service disciplines if they are work-conserving.

Denote X = Service time of the first customer whose service starts at T+

and Y = Total service time of all customers in the fundamental period other than the first customer.
We define the conditional distribution given that X = x

mgz. (ylx=x)=P{Y<y, K(Tf-) =k'l]J T+ =j, K('tk+) =k, X =x}.
and the transform
M (x, s;j) = rc'sy mgz. x,d,y) | 1<k, k'<m,,
0
where Tf is the epoch at which the fundamental period ends, and J(t) and K(t) denote the service

state and arrival phase state at t, respectively. Note that the service state at T, + is equal to the
service state at T~ from the assumption of the LIFO preemptive discipline.

In order to derive M*(x, s; j), we consider the case in which there are n arrivals during the
first custom service period (n =0, 1, ). When n = 0, its probability is given by exp(Tx) (= ao).
When n =1 (> 0), service time of a customer who preempts the first customer service for the first
time follows the distribution H..(x) with probability h.j.(]', j=1,2,--,m;). And then, the new

fundamental period whose length distribution is G(xi succeeds. When this new fundamental
period ends, the service of the first customer is resumed. Therefore, the probability of this case is
given by

o= - | exp(tup Tah, ®1)G*)

i
U+ U] =X

x (1;®exp(Tu,) TO)G*(5))(I,® exp(Tu)T0ex) G*(s) (I, ® exp(Tu,, ))(e,® L).
Then, we have

M0 sif) = X o, = 6;®1) exp((,® T+ (1,® TG (s)x) (e,® L.
Since

G*s;j) = re'sx M*(x, s; j) de(x),
we have (4). Since(i’r{J(Tf+) =il J(Tf-) =j} = hjj., we have (3).
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