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1. Introduction

Boxma and Groenendijk [3] find a pseudo-
conservation law for a discrete-time cyclic-service system
with batch Bernoulli process (BBP) arrivals, expressing
a weighted sum of the mean waiting times at the
individual stations in the system as a function of its traffic
characteristics. The approach taken in [3] is based on
their companion paper [2] treating a continuous-time
system with Poisson arrivals. However, the result [3]
for the discrete-time system with BBP arrivals, and
therefore, the result for the continuous-time system with
batch Poisson arrivals (obtained by taking the limit as the
slot length tends to zero in [3]) are seen to be incorrect
[1,4]. To the best of the author's knowledge, however,
there exists no literature discussing how such incorrect
argument appears in [3].

The main purpose of the paper is to present a (last
form of) pseudo-conservation law for the discrete-time
system with BBP arrivals, identifying two errors in
Boxma and Groenendijk [3] and making corrections.

2. Model description and notation

Time is divided into slots which are equal to time
unity (one) in length for a moment. We consider a
multi-queue, single-server system with N infinite
queueing capacity stations. Each individual station is
visited by the server in a cyclic order according to one
among exhaustive, gated, 1-limited and 1-decrementing
service strategies [7]. Arrivals occur at the end of a slot.
This arrival assumption is called as late arrival; see
Takagi [8]. Customers arrive at a station according to a

batch Bernoulli process [8,9].
Let X, be the number of arriving customers at

station i during a slot with first two moments; )‘i =
E[X], X(iz) = E[X%]. Let H, be the service time of a
customer arriving in station i with first two moments; h,
:= E[H], and h® := E[H?]. The offered loads are then

N .
givenas p, :=Ah, and p= 3 p,.
i=1

Let S, be the server switch-over time between
stations i and i (mod N) +1 with first two moments s;,
s(iz). The total switch-over time of the server during a

Z S, with first two moments s,
i=1

cycle is given as S :=

and s2).

Let C be the cycle time, i.e. the time between two
successive arrivals of the server at a station. The flow
balance argument in leads to the mean cycle time as

c:=E[C]=s/(1-p). 2.1)

Let {e, g, 1/, 1d} be the partition of the station
index set (1, 2,..., N} where e : = { j | station j is
g:= {j!station jis gated}, 1/ :={j!
station j is 1-limited}, and 1d : = {j | station j is 1-
decrementing}. Denote by A, the event that the service

exhaustive),

is provided upon its arrival at station i. The probability
of A, Pr[Ai], is then given by

PriA)=Ac=As/(1-p) (@€ 1, (2.2)
Pr{A]=A(1-p)s/(1-p) (i€ 1d). (2.3)

3. The pseudo-conservation law

Let w, be the mean waiting time of a customer in
station i (1 £i £N). Using the work load decomposition
result [3] together with the lumped work load result for
the non-vacation (ordinary) system [9], we have
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where m, denotes the mean amount of work that is left at

station i after an arbitrary departure from that station.

Remark 3.1 For a zero switch-over time (s = 0, 52 /
s = 1) system, (3.1) reduces to the conservation law of
Bisdikian [1] and Takahashi & Hashida [9]. In Boxma
& Groenendijk [3] the second term of (3.1) is
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N A,
where h ;= 3 =t h,, A and A denote the first two
i x 1

moments for lumped arrival batch size (X := Z X).

i=1
Boxma & Groenendijk [3] miscalculate the mean lumped
work load for the non-vacation system. Indeed, their
result [3] is valid for a single-station (N = 1) system. §

It remains for us to derive the quantity m, for an

individual station. For exhaustive and gated stations it is
easily verified that from the definitions of service

strategies
m=0 (i€e), (3.2)
m, = A(cpph; =cp? (i€ g). (3.3)

For 1-limited and 1-decrementing stations, somewhat
more work is required. Conditioning on A, and

applying the argument in Shimogawa & Takahashi [6],
we obtain

A2,
1 1 :
m, = cp[Aw, +p, + "y ] e 1), (34
1
A.h®@
mi = cl,(l - pl)[P,WI - [Wl
x(2) )~2 x k(?) -
1

)] (e 1d). 3.5

2l(l-p) 24,

Remark 3.2 In [3], the last term in the curly bracket
Boxma & Groenendijk [3]
misunderstand that the mean number of customers who

of (3.5) is missing.

arrive while the server is present at station i but who are
still waiting to be served, E[N?], is equal to the mean

number of customers left behind by a departing customer
in a Geom*X/GI/1 system with arrival batch X, and
service time H,. However, E[N] is the mean number of
customers left behind by a departing customer in a
modified Geom*/GI/1 system with arrival batch X, and
service time H;. Here, by modified we mean that cach
busy period begins with only one customer (batch size
initiating each busy period is one). Thus, Boxma &
Groenendijk's result {3] is valid for a single (non-batch)
arrival system. B

Substituting (3.2) through (3.5) into (3.1) yields
the following result.

Theorem 3.1 (Pseudo-conservation law) For a
discrete-time Geom/GI/1 type multi-queue system
under mixed exhaustive, gated, 1-limited and 1-
decrementing service strategies, we have

Y opw; + Z p; (1 - A)w,

ieeug
+ Z pi [1 - liC(l - pl)] Wi
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z(x@) A% -A)hyp, . (3.6)
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Remark 3.3 a) We have so far expressed all quantities
in slots with unity slot length. We now assume a slot to
be of length A. Taking the limit as A — 0 in (3.6), we
obtain the continuous-time result of Chiarawongse &
Srinivasan [4] for a batch-Poisson arrival M%/GI/1 type
multi-queue system. b) For an extension of the pseudo-
conservation law to priority systems, see Takahashi and
Kumar [10]. @
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