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I. Introduction

In this paper, we restrict our attention to the
general one-factor term structure model

(1)  dr =a(t)(¢(t) — r)dt + o(r,t)dB

where 7 is the short rate, B is the Wiener pro-
cess under a risk-neutral probability measure,
and ¢, a and o are nonnegative functions. The
interest rate process is Markov and possesses the
mean-reverting property. The model (1) was
considered by Hull and White (1993) where a
general numerical procedure is presented involv-
ing the use of trinomial trees so that the model
is consistent with initial market data.

The purpose of this paper is to develop a nu-
merical procedure for constructing a trinomial
tree associated with the general one-factor term
structure model (1). It covers not only models
that have been suggested in the literature but
also new models to be developed. As Hull and
White (1993) noted, it is important to be able
to test the effect of a wide range of different as-
sumptions by the same procedure, because there
is no general agreement on which set of assump-
tions is best.

I1. The General One-Factor Interest
Rate Model

The trinomial tree developed by Kijima and
Nagayama [3] can be extended to the tree asso-
ciated with the general one-factor interest rate
model (1), although [3] do not mention explic-
itly. We define

(2)  dz(t) = —a(t)z(t)dt + 8(z(2),t)dB.

Suppose 7(t) = 6(t) + z(t). The function 6(¢) is
called the shift function. Then 6(0) = r(0) and,
from (2), we have

dr = (0'(t) + a(t)8(t) — a(t)r)dt + §(z,t)dB.
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Therefore 6(t) must satisfy

(3) 0'(t) + a(t)0(t) = a(t)p(t), 0<Lt<T.

and § must satisfy

(4)  b(a(t),1) = ofa(t) + 0(2),).

We discretize the time parameter ¢ in terms
of At = T/N. Let z, = z(nAt), a, = a(nAt)
and 0, = 8(nAt). Let Az, = 2,41 — To. Ap-
proximation of (2) is given by

(6) Az, = —anz At + o(z, + 0,,nAL)AB,,

where B, = B(nAt) and AB, = Bn41 — B,.
Rewriting (5) yields

Tny1 = (1 — anAt)zn + 0(zy + 6,,nA)AB,.

Let Bo be a positive number and define the
sequence {f,} by

(6)ﬂn = ﬁn—l(l - anAt) = fo H(l - akAt).
k=1

Suppose that movements of the discretized stochas-
tic process {z,} follow

(1 - a,At)z, + B, with prob. p(n)
Tn (1 - apAt)z,
(1 - apAt)z, — B, with prob. p(n)
(7)

where the probability p(n,z,) is determined so
as to satisfy the variance condition. Namely,
since o(zn, + 0n, nAt)AB, has variance 0?(z, +
6,,nAt)At, we must have

©) pmza) =3 (

2
o(zn +ﬁ0n, nAt)) At
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with prob. 1 — 2p(n)
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Of course, 0 < p(n,z,) < 3 for all n < N. This

restriction is satisfied as far as
(9) Brn > 0(zn + 0p, nAL)V AL

Note that the tree representing movements of
{z,} is recombining. This is easily seen from
(7) using an induction argument. The values of
z, consist of {jfn—1 ; —-n<j<n}

The procedure described above has two main
defects in the general framework. The first one
is the difficulty of determining the sequence {4, }
in (6) that must satisfy (9). If the volatility
function o is uniformly bounded and the se-
quences {a,} and {6,} are given, this may be
resolved by choosing (3 appropriately. However,
in the general framework, it is not always pos-
sible to find such {8,}. The second problem is
that the highest node in the tree possibly non-
increases in n, i.e.,

(10) nﬁn-—l Z (n + l)ﬂn

for some n < N. If this happens, the geometry
of the tree shrinks as time goes by. It is then
imagined that the approximation based on (7)
cannot be good.

III. The Proposed Procedure

We define (7, 7) as the node for which ¢t = nAt
and , = jfn-1, and denote by z,; the value
. of z at node (n,j). Since the distributions of
AB, in (5) are the same, the higher the volatil-
ity, the bigger the movement of z. In order to
take this fact into consideration, we introduce
a positive integer-valued function ¢, called the
step size function, that determines the multiples
of B. Suppose the sequence {f,} is determined
according to (6) and is fixed. We assume that
movements of the discretized process {z,} fol-
low

(1 — anAt)z, + ¢(n, 7)B, with prob. p(n)
Tn (1 - apnAt)z,

(1 —anAt)z, — o(n, j)Bn with prob. p(n)

(11)

with prob. 1 — 2p(n)

where ¢(n,j) and p(n,j) are determined so as
to satisfy the variance condition. Namely,

0(Zn,; + On, nAt)> 2 At

(12) p(n,j) = % ( @(n,25,5)Bn

1
see (8). Because 0 < p(n,j) < 50 We have
o(znj + On, nA)VAL
Bn ’

which reveals the fact that the higher the volatil-
ity the bigger the value of ¢. Once ¢ is de-

(13)  ¢(n,j) >

termined, the branching probability p(n,j) is
given by (12). Since (1 — apAt)zn; = 7Bn,
the assumption (11) implies that the node (n, 7)
branches to the nodes (n + 1,7 + ¢(n, 7)), (n +
l,j), and (n + l,j - (p(TL,]))

To overcome the second defect described by
(10), we impose another restriction on the step
size function. That is, we require

(] + go(n,]))ﬁn 2 j,ﬁn—ly
(] - ‘ro(na]))ﬂn S jﬁn—la
where z, = jfB,-1. Combining, we have

. ljlan At
4 >

- The step size function ¢ can be any positive

integer satisfying both (13) and (14) by which
the defects of the Kijima-Nagayama procedure
described in Section 2 are avoided.
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