1-G—-6

Y954FE A AR AR LV —2 5 v X - Y —F 54
HEP IR

Error-Free and Best-Fit Extensions of Partially Defined Boolean Functions
7 b A=A K% (Rutgers University) BOROS Endre

01001374 A%

ZARF (IBARAKI Toshihide)

02601514 HEBARSE 4CBFFIA (MAKINO Kazuhisa)

1 Introduction

In this paper, we address a fundamental problem re-
lated to the induction of Boolean logic (e.g., (2, 3]), that
is, given a set of data, represented as a set of binary
“true n-vectors” (or “positive examples”) and a set of
“false n-vectors” (or “negative examples”), we have to
establish a Boolean function (extension) f with some
specified properties, so that f is true(resp. false) in
every given true (resp. false) vector.

For instance, data z represent the symptoms to diag-
nose a disease, e.g., ; denotes whether temperature is
high (z, = 1) or not (z; = 0), and z, denotes whether
blood presure is high (zz = 1) or not (z2 = 0), etc.
Establishing an extension f, which is consistent with
the given data, amounts to finding a logical diagnostic
explanation of the given data. Therefore, this may be
considered as a form of knowledge acquisition from given

examples.

In this process, some knowledge or hypothesis about
the extension f may usually be available beforehand.
Such knowledge may be obtained from experience or
from the analysis of mechanisms that may or may not
cause the phenomena under consideration. In the above
example of diagnosing diseases, it would be natural to
assume that we somehow know the direction of each
variable that tends to cause the disease to appear. By
changing the polarities of variables if necessary, there-
fore, the extension f(z) can be assumed to be positive in
all variables. In other words, we are asked to establish
an extension f, which is a positive Boolean function. In
this application, not only the obtained function f itself
but also the fact that the given set of data actually has
a positive extension are important information to know,
since the latter verifies that the assumption on the di-
rections of variables is in fact correct.

Restriction on the functional form of an extension may
also arise in a different context. For instance, applica-
tions in artificial intelligence often require the exten-
sion f to be a Horn function, because such function can
be characterized by DNF (disjunctive normal form) of
Horn terms, and hence can be realized by Horn rules.

These suggests an important problem in this area, that
is, determining the existence or nonexistence of an ex-
tension f of given data, which is in a given class of
Boolean functions. In addition to classes of positive
functions and Horn functions, some other classes of func-
tions, such as k-DNF functions, h-term DNF functions,
dual-comparable functions, threshold functions, read-
once functions, are discussed in this paper.

Unfortunately, the real-world data might contain er-
rors. As for the above examples, measurement error
might come in when getting data, or there may be some
other factors not represented as variables in the vec-
tors (e.g., some bacteria which cause the disease, in the
above example of diagnosis). To cope with such situa-
tions, we may have to give up the goal of establishing
an extension that is perfectly consistent with the given
data. If there is no such extension, the best we can ex-
pect is to establish an extension f, which has the mini-
mum error of misclassifications. This problem will also
be extensively studied in this paper.

The problem of finding extensions of given data arises
in various fields including not only artificial intelligence
(2, 3] but also learning theory [1], game theory, and so

on.

2 Definitions and Problems

A Boolean function, or a funcvtz'on in short, is a map-
ping f : {0,1}"* — {0,1}, where z € {0,1}" is called
a Boolean vector (a vector in short). If f(z) = 1 (resp.
0), then z is called a true (resp. false) vector of f. The
set of all true vectors {false vectors) is denoted by T'(f)
(F())-

A partially defined Boolean function (pdBf) is defined
by a pair of sets (T, F) of Boolean vectors of n vari-
ables, where T denotes a set of true vectors (or positive
examples) and F denotes a set of false vectors (or neg-
ative examples). A function f is called an extension (or
theory) of the pdBf(T, F) if T C T(f) and F C F(f).

Evidently, the disjointness of the sets T and F is a
necessary and sufficient condition for the existence of

an extension, if any Boolean function f may be used.

— 142 —

It may not be evident, however, to find out whether a
given pdBf has a extension in C, where C is a subclass of
Boolean functions, such as the class of positive functions,
the class of k-DNF’s, etc. Therefore, we first consider
the following problem:

Problem EXTENSION(C)
Input: a pdBf(T, F), where T, F C {0,1}".
Question: Is there an extension f € C of (T, F)?

Furthermore, for a pdBf(T, F), define the error size
of a function f by

e(f) =l{a €T[f(a) =0} +|{b € F|f(b) =1}].
Based on this, we introduce the following problem:

Problem BEST-FIT(C)
Input: a pdBf(T, F), where T, F C {0, 1}™.
Output: f € C that realizes mingec €(f).

Clearly, problem EXTENSION is a special case of
problem BEST-FIT, since EXTENSION has a solu-
tion f if and only if BEST-FIT has a solution f with
€(f) = 0. This means that if BEST-FIT(C) is solvable in
polynomial time (i.e., polynomial in n, |T| and |F|), for
some class C, then EXTENSION(C) is also polynomi-
ally solvable; conversely if EXTENSION(C) is NP-hard,
then so is BEST-FIT(C).

A function f is positive if z < y(i.e., z; < y; for all
1 € {1,2,...,n}) always implies f(z) < f(y). A pos-
itive function is also called monotone. The variables
Z1,Z2,...,Z, and their complements Z;,Z,,...,%, are
called literals. A term is a conjunction of literals such
that at most one of z; and Z; appears for each variable.
The constant 1 (viewed as the conjunction of an empty
set of literals) is also considered to be a term. A dis-
Junctive normal form(DNF) is a disjunction of terms.
Clearly, a DNF defines a function, and it is well-known
that every function can be represented by a DNF (how-
ever, such a representation may not be unique), and f is
positive if and only if f can be represented by a DNF, in
which all the literals of each term are uncomplemented.
A function is called a k-DNF if it has a DNF with at
most k literals in each term, h-term DNFif it has a DNF
with at most A terms, and Horn if it has a DNF with at
most one negative literal in each term.

The dual of a function f, denoted f¢, is defined by

fiz) = f(z),
where f and z denote the complement of f and z, re-

spectively. Asis well-known, a Boolean expression defin-
ing f? is obtained from that of f by exchanging V (or)

and - (and), as well as the constants 0 and 1. It is easy
to see that (f V g)? = fig?, and so on. A function f
is called dual-minor if f < f¢, dual-major if f > f4,
dual-comparable if f < f¢or f > f¢ and self-dual if
jt=f.

3 Results

In the table below, we summarize the complexity of
EXTENSION(C) and BEST-FIT(C) for various classes
C of functions.

Function classes EX | B-F
Transitive:
General P r
Positive r r
Regular r p
Hereditary:
(Positive) k-DNF NPC | NPH
(Positive) k-DNF with fixed & P NPH
(Positive) h-term-DNF NPC | NPH
(Positive) h-term-DNF with fixed b > 2 NPC | NPH
(Positive) 1-term-DNF P NPH
(Positive) h-term-k-DNF NPC | NPH

(Positive) h-term-k-DNF with fixed h > 1 | NPC | NPH
(Positive) h-term-k-DNF with fixed £ > 1 | NPC | NPH

(Positive) h-term-k-DNF with fixed A, & P P
Horn P NPH
Dual-comparable:
Self-dual P r
Dual-minor P P
Dual-major p P
Positive self-dual P NPH
Positive dual-minor P NPH
Positive dual-major P NPH
Threshold P NPH
2-nonotonic positive NPC | NPH

EX: EXTENSION, B-F: BEST-FIT, P: Polynomial. NPC:
NP-complete, NPH: NP-hard

Table 1: Summary of results.

References

[1] M. Anthony and N. Biggs, Computational Learning
Theory, Cambridge University Press, 1992.

[2] Y. Crama, P. L. Hammer and T. Ibaraki, Cause-
effect relationships and partially defined boolean

functions, Annals of Operations Research, 16 (1988)
299-326.

{3] D. Kavvadias, C. H. Papadimitriou and M. Sideri,
On horn envelopes and hypergraph transversals,
ISAAC’93 Algorithms and Computation, edited by
K. W. Ng et al., Springer Lecture Notes in Com-
puter Science, 762 (1993) 399-405.

— 143 —

