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On Restricting Virtual Multipliers in Cone-Ratio DEA
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1. Introduction

Data Envelopment Analysis (DEA) has been widely
applied for evaluating the relative efficiency of de-
cision making units (DMUs) with multiple inputs
and outputs. The relative efficiency is measured
by a ratio scale of the virtual input vs. the virtual
output, which are the weighted sums of inputs and
outputs, respectively. Since the original Charnes,
Cooper and Rhodes (CCR) model, many studies
have been developed to cope with the actual situ-
ations of the problems. One of them is directed to
research in the feasible region of the weights and
has actually imposed some additional constraints
to the weights. Representatively, such studies re-
sulted in the Assurance Region (AR) model and
the Cone-Ratio (CR) model. The assurance region
method confines the feasible region of the weights
by imposing a lower and an upper bounds to the
ratio of some selected pairs of weights. On the
other hand, the cone-ratio model solves the CCR
model first and chooses a few exemplary efficient
DMUs from among all the efficient ones by consult-
ing with experts on the problem. Then, the cor-
responding optimal weights to the selected efficient
DMUs are used to construct a convex-cone as the
feasible region of the weights. However, usually the
optimal weights are not uniquely determined and
hence there is ambiguity in selecting the weights to
form the convex cone.

In an effort to overcome this problem, this paper
will propose three practical methods for deciding
the convex cone in accordance with three principles
which will be explained later.

2. Cell Subdivision of Multiplier Simplex

Suppose there are n DMUs with m inputs and s
outputs. The i-th input and the r-th output of the
j-th DMU are denoted by z;; and y,;, respectively.
Let the input and output matrices X and Y be

X =(zi;) ER™" and Y = (y5) € R**". (1)

We assume X > O and Y > O. The virtual input
and output for DMU; are defined by

Vi=Y vz (G=1,...,n) (2)
i=1

and

where (v;) ((ur)) is the the weight (or multiplier)
to the input (output) ¢ (r). Again, we assume v; >
0 (Vi) and u, >0 (Vr).

Now, we observe the ratio of the virtual input
vs. output:

Ri= Ui Lol
TV v
Since the ratio R; is invariant under any multipli-

cation by a positive scalar ¢ to (v,u), we impose
hereafter the simplex constraint to (v, u) as follows:

(j—_—l,...,n) (4)

m

Zvi-i-zu,-:l. (5)

i=1

By this constraint, together with the positiveness of
multipliers, the feasible (v,u) forms the interior of
the (m + s — 1) dimensional simplex denoted by S.
Under the above assumptions, for each (9,4) € S,
there exists at least one DMUj, that maximizes
the ratio R; (j = 1,...,n) defined by (4). We call
DMU;, dominates (b,%). It can be demonstrated
that the (m+s—1) dimensional simplex S is divided
into a finite number of (m+ s — 1) dimensional cells
dominated by some DMUs. There may exist (m +
s — 2) or less dimensional dominant DMUs, with
the extremal case 0 dimensional (point) dominant

DMUs.

3. Assurance Region and Cone-Ratio
Models

In applying DEA to actual problems, we should be
conscious of the economic/socioeconomic aspect of
the problems, which is closely related with the vir-
tual multiplier (weight) v (u) to the input (output)
items. Although the original DEA models impose
no restriction on v and u except positivity (or non-
negativity), we can introduce the relative impor-
tance of weights by restricting the feasible region
of weights. Along this line, two remarkable models
have been proposed, i.e. the assurance region (AR)
and the cone-ratio (CR) models.
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The AR model imposes lower and upper bounds
to the ratio of some selected pairs of weights. For
example, we may add a constraint on the ratio of
weights to Input 1 and Input 2 as follows:

bz < 22 < ugs, (6)
V1

where l12 and u;2 are the lower and upper bounds to

the ratio, respectively. Likewise, similar constraints

may be added to pairs of some output multipliers

and even to multipliers between some input and

output multipliers.

On the other hand, in the cone-ratio model, es-
pecially in the polyhedral cone-ratio model, some
exemplary DMUs will be chosen from among the
CCR efficient DMUs as a result of expert knowl-
edge. Then, the optimal weights corresponding to
the selected DM Us will be used to form a polyhedral
cone for an admissible region of multipliers. How-
ever, usually the optimal weights are not uniquely
determined. Therefore, we need some other criteria
for selecting a reasonable point in the cell. There
may be at least three principles for this purpose.
The first one, the most restricted case, is to choose
the cone as the minimum diameter convex set which
makes the exemplary DMUs efficient. The next one,
the most relaxed case, 1s to choose the cone as the
convex hull of the exemplary cells. The last one
chooses the cone generated by the central points of
each exemplary DMUs.

However, it is not easy to implement the above
three principles. In fact, the first two might belong
to NP-hard problems and the last one depends on
the method of choosing the central point for each
cell.

4. Practical Methods for Three Cases

Corresponding to the above mentioned general prin-
ciples, we will propose three practical methods
which approximately implement them.

4.1 The Most Restricted Case

Let the chosen exemplary DMUs be DMU,,,
.- wDMU,,. We solve the following fractional pro-
gram (FP;) for each DMU,, (k=1,...,p).

Yorey Ur Zj;ék Yra,
ity v Ej#k Tia;

Zuryrak =1 (7)
r=1

(FPy)

max

m

subject to Zv.'a:,'o,k =
i=1
m

Zvixiaj Z Zuryraj (V]) (8)
i=1 r=1
v; >0 (Vi) u. >0 (Vr). (9)

The fractional program (FP) can be solved as a
linear programming problem via the Charnes and
Cooper transformation (1962).

4.2 The Most Relaxed Case

This case aims to obtain a cone approximately re-
alizing the convex hull of exemplary cells. Instead
of maximizing the objective function in (FP;), we
try to minimize it, subject to the same constraints.
Thus the objective is:

doren Ur Zj;tk Yraj;

ity Ui ik Tiaj

This programming will find a vertex in the cell
DMU, which is, in a sense, farthest from other
exemplary DMUs. Let the optimal solution be
(%;,u;) (kK =1,...,p), which will be utilized to
form the cone for the cone-ratio model.

4.3 The Central Case

minimize

(10)

There may be several approaches for obtaining rel-
atively interior solutions, among which we will ex-
plain two.

4.3.1 Primal-Dual Interior Point Method

The primal-dual interior point methods for linear
programming problem will theoretically converge to
the center of the optimal facet of the problem and
the solution is strictly complementary.

4.3.2

Parametric Linear Programming Approach

If a strictly complementary solution, ie. v* >
0 and u* > 0, is required instead of the central one,
we can obtain one, by a simplex based parametric
programming method.

5. Enumeration of Optimal Vertices

It is interesting to know all the vertices (v, u) of the
convex polyhedron, which makes a DMU efficient,
not only for the purposes mentioned in the preced-
ing sections but also for understanding the overall
positioning of the efficient DMU in the (v, u) space.

Recently, Fukuda (1993) has developed an algo-
rithm and software! for enumerating all vertices of a
convex polyhedron defined by a system of linear in-
equalities, base on the Double Description Method
(1958). This software works efficiently for medium
size problems.

6. An Example

An example will be exhibited at the presentation.

1The free software “cdd.c” is available via anonymous ftp
from ftp.epfl.ch (directory incoming/dma).
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