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1 Introduction

We develop a software availability model incorporat-
ing software failure-occurrence and fault-correction times,
under the assumption that the hazard rate for software-
failure occurrence reduces geometrically with the progress
in fault-removal process. Taking into consideration that
the software system alternates the operational state that
the system is operating and the maintenance state that
the system is fixed, we model the time-dependent behav-
ior of the system with a Markov process. Expressions for
several quantities of software system performance are de-
rived from this model. Finally, numerical examples are
presented for illustration of software availability measure-
ment.

2 Model Description

The following assumptions are made for software avail-
ability modeling:

1. The hazard rate is constant between software failures
caused by faults in the software system, and geomet-
rically decreases whenever each fault is corrected and
removed (see Moranda {1]).

2. All faults that have caused software failures are cor-
rected and removed, and no new faults are introduced
during the correction activity.

3. The time to remove a fault follows an exponential
distribution with parameter u. The parameter p is
called the fault correction rate.

Now, we consider a stochastic process {X(t), t > 0}
with the state space (W, R) where up state vector
W= (W,; n =0, 1, 2, -} and down state vec-
tor R= {R,; n = 0, 1, 2, --:}. Then, the events
{X(t) = W,} and {X(t) = R,} mean that the system
is operating and fixed at time point ¢ when n faults have
been removed, respectively. From assumption 1, when n
faults have been removed, the hazard rate for the next
software failure occurrence is given by

z2,(t)=Dk"(n=0,1,2,---; D>0,0< k <1),(1)
where D and &k are the initial hazard rate and the de-

creasing ratio, respectively. The sample state transition
of X(t) is illustrated in Figure 1.
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3 Software Availability Analysis and
Measurement
Letting pn(t) = Pr{X(t) = W,} and g,(t) = Pr{X(t) =

R,} (n=0,1, 2, ---), we get the following difference-
differential equations with respect to pn(t) and ¢, (t):

po(t) = —Dpo(t)
p:,(t) = —Dknpn(t) +/J'qn—l(t) (n=1,2,--) :(2)
q:x(t) = —.“'q"(t) + Dknpn(t) (n = 0) 17 2v t )

where the initial conditions are given as follows:

Po(0) =1, o(0) =0 }
Pa(0) = ga(0) =0 (n=1,2 )

Solving (2) with respect to Pn(t) and g, (t) under the initial
conditions (3) yields
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pa(t) = Z Az‘le—Dk't + Z B,’j',t'e"“, (4)
=0 =0
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gn(t) = Z(A:,(C_Dk L+ BZ,,t'e““"), (5)
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where we postulate z =0 in (4) for n = 0. Constant
1=0

coefficients Af | and A} are given by
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(n=0,1,2 -;1=0,1,2, -+, n), (6)
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("':0) 1,2 - 1=0, 1, 21"'773)’ (7)
0
respectively, where we postulate [] - =1 in (6) and (7)
j=0 '
o

for n = 0. Constant coefficients B, and Bf can be

calculated by using the following recursion formulas:
Ln(n—
nanln(n 1)
Bp,n—] = £ n
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n=1,2, ---;i=1, 2, -, n), (11)
respectively. Let S™ and S5, (n=1, 2, --; m=0, 1, 2,
.-+, n) denote a set of integers from 0 to n, i.e. S"={0,
1, 2, .-+, n}, and a family of those S™'s subsets which
contain (n+1-m) elements, respectively. We can repre-
sent a element of S}, as S}, , (u=1, 2, ---, (";1)), where

m
bination containing m elements which are extracted from

S

Provided that the initial fault content in the system
prior to the testing, IV, is known, the instantaneous soft-
ware availability (see Shooman [2]) is defined as

("“):(n + 1)!/[(n + 1 — m)!m!] is the number of com-

N
A(t) = palt). (12)
n=0

That is, A(t) in (12) represents the ‘probability that the
software system is operating at specified time point ¢.

4 Numerical Examples

The instantaneous software availabilities, A(t)’s in (12)
for various values of k representing the decreasing ra-
tio in the hazard rate are shown in Figure 2, where
N =10, D = 0.1, and g = 0.5. We can see that the
probability that the software is operational becomes larger
as k decreases. The instantaneous software availabilities
A(t)’s for various fault correction rates, pu’s, are shown
in Figure 3 where N =10, D =0.1, and k& = 0.8. The
fault correction rate, g, can be regarded as a maintainabil-
ity index of a software. That is, the software system has
high maintainability with increasing u. Figure 3 shows
that the increase in maintainability improves the software
availability.
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Figure 1: A diagrammatic representation of state transi-
tions between X (t)'s.
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Figure 2: Dependence of decreasing ratio of the hazard
rate, k, in A(t) (N =10, D =0.1, p =0.5).
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Figure 3: Dependence of fault correction rate p in A(t)
(N =10, D =0.1, k =0.8).





