Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices

Masakazu KOJIMA Susumu SHINDOH Shinji HARA Tokyo Institute of Technology The National Defense Academy Tokyo Institute of Technology

1. Introduction.

We use the following notation and symbols:

 \hat{S} : the set of all $n \times n$ real matrices,

 $\mathcal S$: the set of all $n\times n$ symmetric matrices,

$$\mathcal{S}_{+} = \{ X \in \mathcal{S} : X \succeq O \},\$$

$$\mathcal{S}_{++} = \{ X \in \mathcal{S} : X \succ O \},\$$

$$\hat{\mathcal{S}}_{++} = \{ X \in \hat{\mathcal{S}} : X \succ O \},\$$

Tr X: the trace of $X \in \hat{S}$,

$$\|X\|_F = \left(\operatorname{Tr} X^T X\right)^{1/2},$$

 \mathcal{F} : an n(n+1)/2 dim. affine subspace of \mathcal{S}^2 ,

$$\mathcal{F}_{+} = \{ (X, Y) \in \mathcal{F} : X \succeq O, Y \succeq O \},$$

$$\mathcal{F}_{++} = \{ (X, Y) \in \mathcal{F} : X \succ O, Y \succ O \},\ \mathcal{F}^* = \{ (X, Y) \in \mathcal{F}_+ : \text{Tr } XY = 0 \}.$$

$$\hat{\mathcal{F}} = \left\{ (X, Y) \in \mathcal{S} \times \hat{\mathcal{S}} : \left(X, \frac{Y + Y^T}{2} \right) \in \mathcal{F} \right\}.$$

The purpose of this paper is to establish a general theoretical framework of interior-point methods for the monotone linear complementarity problem (LCP) in symmetric matrices. The LCP in symmetric matrices is the problem of finding an $(X,Y) \in \mathcal{F}$ such that

$$X \succeq O, Y \succeq O \text{ and Tr } XY = 0.$$
 (1)

We impose an assumption on the LCP (1).

Condition 1.1. \mathcal{F} is monotone, *i.e.*, Tr $(X' - X)^T(Y' - Y) \ge 0$ for every (X', Y') and $(X, Y) \in \mathcal{F}$.

2. Some Basic Results.

2.1. The Central Trajectory.

Suppose that the LCP (1) has an interior feasible solution. Then, for every $\mu > 0$, there exists a unique $(X(\mu), Y(\mu)) \in \mathcal{F}_{++}$ such that $X(\mu)Y(\mu) = \mu I$. (For the proof, see [2].) We call $\mathcal{C} = \{(X(\mu), Y(\mu)) : \mu > 0\}$ the central trajectory.

2.2. Newton Directions toward the Central Trajectory.

Let $(X, Y) \in \mathcal{S}_{++}^2$ and $\mu = \operatorname{Tr} XY/n$. Choose $\beta > 0$. It might seem natural to regard the system of linear equations

$$(X+U,Y+V) \in \mathcal{F} \text{ and } UY+XV = \beta \mu I - XY$$
(2)

in variable matrices $U, V \in \mathcal{S}$ as the Newton equation at $(X,Y) \in \mathcal{S}^2_{++}$ for approximating a point $(X',Y')=(X+U,Y+V) \in \mathcal{S}^2_{++}$ on the central trajectory that satisfies

$$(X', Y') \in \mathcal{F} \text{ and } X'Y' = \beta \mu I.$$
 (3)

However the system (2) does not necessarily have a solution ([2]). Hence we need a suitable modification in the systems (2) and (3) to consistently define Newton directions toward the central trajectory. So we consider the Newton equation at $(X,Y) \in \mathcal{S}_{++} \times \hat{\mathcal{S}}_{++}$ for approximating a point (X',Y') = (X+U,Y+V) on the central trajectory which satisfies:

$$(X+U,Y+\hat{V}) \in \hat{\mathcal{F}} \text{ and } X\hat{V}+UY = \beta\mu I - XY$$
(4)

in variable matrices $U \in \hat{S}$ and $\hat{V} \in \hat{S}$. Then we have:

Theorem 2.1.

- (i) $\hat{\mathcal{F}}$ is monotone.
- (ii) (X', Y') is a solution of the system (3) of equations if and only if it is a solution of $(X', Y') \in \hat{\mathcal{F}}$ and $X'Y' = \beta \mu I$.
- (iii) Let $(X, Y) \in S_{++} \times \hat{S}_{++}$, $\mu = Tr XY/n$ and $\beta \geq 0$. Then the Newton equation (4) has a unique solution (U, \hat{V}) .

2.3. A Generic IP Method.

Now we are ready to describe a generic interiorpoint method.

Generic IP Method.

Step 0: Choose $(X^0, Y^0) \in \mathcal{S}^2_{++}$. Let r = 0.

Step 1: Let
$$(X,Y) = (X^r,Y^r)$$
 and $\mu = \frac{\operatorname{Tr} XY}{n}$.

Step 2: Choose a direction parameter $\beta \geq 0$.

Step 3: Compute a solution $(U, \hat{V}) \in \mathcal{S} \times \hat{\mathcal{S}}$ of the system (4) of equations.

Step 4: Let
$$V = (\hat{V} + \hat{V}^T)/2$$
.

Step 5: Choose a step size parameter $\alpha \geq 0$ such that

$$(\bar{X}, \bar{Y}) = (X, Y) + \alpha(U, V) \in \mathcal{S}_{++}^2.$$
 (5)
Let $(X^{r+1}, Y^{r+1}) = (\bar{X}, \bar{Y}).$

Step 6: Replace r + 1 by r, and go to Step 1.

3. Some Interior-Point Methods.

In this section we present two types of interiorpoint methods, a central trajectory following method, a potential reduction method as special cases of the Generic IP Method. (See [2] for an infeasible-interior-point potential-reduction method.)

3.1. A Central Trajectory Following Method.

First we introduce a horn neighborhood of the central trajectory

$$\mathcal{N}(\gamma) = \{(X, Y) \in \mathcal{F}_{++} : \|\sqrt{X}^T Y \sqrt{X} - \mu I\|_F \le \gamma \mu, \text{ where } \mu = \frac{\operatorname{Tr} XY}{n} \}.$$

Theorem 3.1. Let $\gamma \in (0, 0.1]$. Suppose that $(X, Y) \in \mathcal{N}(\gamma)$. Let $\beta = 1 - \gamma/\sqrt{n}$ in Step 2 and $\alpha = 1$ in Step 5. Let $\bar{\mu} = Tr \bar{X}\bar{Y}/n$. Then

$$(\bar{X}, \bar{Y}) = (X, Y) + (U, V) \in \mathcal{N}(\gamma),$$

 $\beta \mu \leq \bar{\mu} \leq \left(1 - \frac{\gamma}{2\sqrt{n}}\right) \mu.$

Let $\epsilon > 0$. In view of the theorem above, if $r \geq \frac{2\sqrt{n}}{\gamma} \log \frac{\operatorname{Tr} X^0 Y^0}{\epsilon}$, then (X^r, Y^r) gives an approximate solution of the LCP (1) such that

$$(\boldsymbol{X}^r, \boldsymbol{Y}^r) \in \mathcal{F}_{++}, \operatorname{Tr} \boldsymbol{X}^r \boldsymbol{Y}^r \le \epsilon.$$
 (6)

3.2. A Potential-Reduction Method.

For every $(X,Y) \in \mathcal{F}_{++}$, define the potential function $f(X,Y) = (n+\nu)\log \operatorname{Tr} XY - \log \det XY - n\log n$. Here $\nu \geq 0$ is a parameter. Let

$$H(\beta) = \beta \mu \sqrt{X}^{-1} \sqrt{Y}^{-T} - \sqrt{X}^{T} \sqrt{Y}, \lambda_{min} = \min\{\lambda_{1}, \lambda_{2}, \dots, \lambda_{n}\},$$

$$(7)$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ denote the eigenvalues of the matrix XY.

Theorem 3.2. Let $n \geq 3$, $\nu = \sqrt{n}$, $\tau = 0.4$ and $\delta = 0.2$. Suppose that $(X, Y) \in \mathcal{F}_{++}$. Let $\beta = n/(n+\nu)$ in Step 2 and $\alpha = \tau \sqrt{\lambda_{min}}/\|H(\beta)\|_F$ in Step 5, where τ , λ_{min} and $H(\beta)$ are given in (7). Then $(\bar{X}, \bar{Y}) = (X, Y) + \alpha(U, V) \in \mathcal{F}_{++}$, $f(\bar{X}, \bar{Y}) \leq f(X, Y) - \delta$.

By Theorem 3.2, if $r \geq \frac{f(X^0, Y^0) - \sqrt{n} \log \epsilon}{\delta}$ then (X^r, Y^r) gives an approximate solution of the LCP (1) satisfying (6).

References

- [1] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, 1994.
- [2] M. Kojima, S. Shindoh and S. Hara, "Interior-point methods for the monotone linear complementarity problem in symmetric matrices," 1994.