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1. Introduction.

We use the following notation and symbols:
S : the set of all n x n real matrices,
S : the set of all n x n symunetric matrices,
S.,.“—‘{XESZXEO},
S+ ={X€S: X» 0},
3++={XESIX>—O},
Tr X : the trace of X € S,

1/2
IXlr = (o XTX) ",
F :an n(n +1)/2 dim. affine subspace of S?,
Fi={(X,Y)eF: X =0,Y = O},
Fir={(X,)Y)eF: X >0.,Y » O},
F={X,Y)e Fy :Tr XY =0}.

ﬁ={(X,Y)e5xS:(X,&23’—T)ef}.

The purpose of this paper is to establish a
general theoretical framework of interior-point
methods for the monotone linear complementar-
ity problem (LCP) in symmetric matrices. The
LCP in symmetric matrices is the problem of
finding an (X,Y’) € F such that

X>0,Y >0 and Tr XY =0. (1)

We impose an assumption on the LCP (1).

Condition 1.1. F is monotone, i.e., Tr (X' —
X)T(Y' -=Y) > 0 for every (X',Y’) and
(X.Y)e F.
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Newton Directions toward the
Central Trajectory.

2.2.

Let (X,Y) € Si+ and g = Tr XY /n. Choose
f > 0. It might seem natural to regard the
system of linear equations

(X4+U,Y+V)e F and UY+XV =8ul-XY
(2)
in variable matrices U, V € S as the Newton
equation at (X,Y) € Si + for approximating a
point (X', Y") = (X +U,Y +V) € §%, on the
central trajectory that satisfies
(X', Y'Ye F and X'Y' = gul. (3)
However the system (2) does not necessarily
have a solution ([2]). Hence we need a suit-
able modification in the systems (2) and (3) to
consistently define Newton directions toward the
central trajectory. So we consider the Newton
equation at (X,Y) € S;4 x Sy for approxi-
mating a point (X'.Y') = (X +U,Y +V) on
the central trajectory which satisfies :

(X+U,Y+V) € F and XV+UY = pul-XY

(4)
in variable matrices U € & and V € S. Then
we have:

Theorem 2.1.

2. Some Basic Results.

2.1. The Central Trajectory.

Suppose that the LCP (1) has an interior feasi-
ble solution. Then, for every p > 0, there ex-
ists a unique (X (u),Y (1)) € F44+ such that
X(p)Y () = uI. (For the proof, see [2].) We
call C = {(X(u),Y (1)) : p > 0} the central
trajectory.

(1) F is monotone.

(ii) (X'.Y") is a solution of the systemn (3) of
equations if and only if it is a solution of
(X'Y'YeF and X'Y' =pul.

(iii) Let (X,Y) € S44y XS4y, p=Tr XY /n
and § > 0. Then the Newton equation (4)
has a unique solution (U,V).



2.3. A Generic IP Method.

Now we are ready to describe a generic interior-
point method.

Generic IP Method.
Step 0: Choose (X%, Y?) € S%2 .. Let r = 0.
Step 1:  Let (X,Y) =
Tr XY
no

(X" Y") and p =

Step 2: Choose a direction parameter 5> 0.

Step 3: Compute a solution (U, ViesxS
of the system (4) of equations.
Step 4: Let V=(V+VT)/2.

Step 5: Choose a step size parameter o > 0
such that
(X, V)=(X.Y)+aU,V)eS2,.

Let (‘Xr-i-l7 Y1‘+1)

(5)
=(X,Y).

Step 6: Replace 7 + 1 by 7, and go to Step 1.

3. Some Interior-Point Meth-
ods.

In this section we present two types of interior-
point methods, a central trajectory following
method, a potential reduction method as spe-
cial cases of the Generic IP Method. (See [2] for
an infeasible-interior-point potential-reduction
method.)

3.1. A Central Trajectory Following

Method.

First we introduce a horn ncighborhood of the

central trajectory
"
N = {(X,Y) € Fop : IVX YVX -

plIllp < yp, where = Tv f(Y}

Theorem 3.1. Let v € (0, 0.1].

Suppose that

(X,Y) € N(y). Let B =1~+/\/n in Step 2
and . =1 in Step 5. Let = Tr XY /n. Then

(X,Y)=(X,Y)+(U,V)eN(y),
Br<p<(1-32%)n

Let € > 0. In view of the theorcm above, if

r > “‘/_lo D XY X Y’ . then (X" Y") gives an
apploxnnate solumon of the LCP (1) such that

(X" Y eFi, Tt XY <e.  (6)

3.2. A Potential-Reduction Method.
For every (X,Y) € F44, define the poten-
tial function f(X,Y) = (n + v)logTr XY -
logdet XY — nlogn. Here v > 0 is a parame-
ter. Let

HP) = /X V¥ - VX' VY,
Amin = min{A;. Ao,..., A},
' (7)
where Ap, Ao, ..., , Andenote the eigenvalues of

the matrix XY.

Theorem 3.2. Letn >3, v=/n.7=04and
6 = 0.2. Suppose that (X.Y) € Fiy. Let f =
n/(n+wv) in Step 2 and o = 7/ Anin /| H (O F
in Step 5, where 7, A\nin and H(3) are given in
(7). Then (X,Y)=(X,Y)+a(U, V)€ Fiy,
fIX,Y) < f(X,Y) 6.

0 0
By Theorem 3.2, if r > nXY é)-—\/ﬂ-logc‘ then
(X", Y") gives an approximate solution of the
LCP (1) satisfying (6).
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