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1 Introduction

Monotonc complementarity problems in symmetric matrices provide a unified mathematical
modecl for various problems arising from statistics and control theory.

We will show the existence and the uniquencss of the weighted central trajectory which
converge to a solution of the monotonc complementarity problem if the interior of the
feasible region of the problem is noncmpty.

Dcnote M . the set of all n x n real matrices,
MM the set of all symmetric rcal matrices in M,
MP™ o the set of all positive definite symmetric matrices in M,
MT+ the st of all positive semi-definite matrices in M.

Now wc consider a nonlincar monotone complementarity problem in symmetric matrices;
CP : Find an (X.Y) € MP™" x MY such that (X, Y)e F and Tr XY =0,

where F is a mazimal monotone subsct of M x M de., Te (X -X'NY -Y") > 0 for
every (X.,Y), (X', Y') € F (monotonicity) and there is no monotonc sct which properly
contains F.

For X € M, we writc X > O if X is positive definite, and X > O if X is positive
scmi-definite. For the sake of simplicity, we use the following symbols;

F(R;) = {(X,Y)e M¥™ x MY (X — Ry.Y — Ry) € FJ,

FiR;) = {(X.)Y)eEF(R;): X »>0,Y =0},
Fie(Rz) = {(X,Y)eF(R;): X »O0.Y » O},
F(Rz) = {(X.Y)eF4R;): Tr XY =0},
Fi = F40) ={(X.Y)eF: X »0.Y » O},
.7:++ = F++(O):{(X.Y)€]:X>'OY>'O}
Fo= F(O) ={(X.Y)eF, Tr XY =0},
B+ — {RZ E j\/{sym X J\/I.Q!/nl N ,F (R' #m

. 7,)_ },
By = {Bye MY x M9 Fyp(Ry) £ 0).
B = {R;e€ MY x M : F(R;)#0

where Ry = (Ry, Ry ) € MY x MM,

2 Existence and Continuity of Weighted Centers

We consider the following mapping;
HX.Y)=YXY? for (X.Y)e MY x MP™.

Theorem 2.1. For cvery A € MY U{O} and Ry € By, the set HT'(A)NF(Ry) is
nonempty. Moreover, if in addition A € MY, the set H A)YN F L (R) consists of an
[ |
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unique point which is continuous in MY x By,

Theorem 2.2. (1) By, is a nonempty open convex, subset of M™™ x MM,

(2) B4y C B C By C clByy. where cdByy denotes the closure of By y. |
Theorem 2.3. The solution set F* of the CP is convex. Moreover. if F oy # 0. then F~
is a nonempty and compact convex set. | |



3 Trajectory
From Theorem 2.1, for every A € MY and R, € Biy. there exists a unigue point

(X (ar2): Y (ar) such that (X(‘a,r.vz),Y(_\_r,'z)) € H'(A)N F(Rz) and it is continuous
w.r.t. A and Rz. In this scction, we consider the trajectory T consisting of (X, Y t)'s
such that A

(X (1), Y(1)) = HT'(A(t)) N F(Rz(t)) (t € [0,1]), (1)

and that
A(t), R;(t) arc continuous on t € [0,1].
A(t). R( .)——>O as f——>0
A(t) e MY for every t e (0,1], (2)
Rz(1) € B++. |
A(0)=0,R;(0)= 0.

To solve the CP, we numerically trace the trajectory until ¢ gets sufficiently small.

If in addition, A(t) = tA(1l), Rz(t) = tRz(1), we call the solution set of (1) the
trajectory T with a lincar contmuatlou.

Let t = inf{t € (0.1] : (A(t). Rz(t)) € MY x Byy).

Theorem 3.1. Suppose that the trajectory T is bounded. Then
(a) the trajectory T has at least one limiting point as t — t,
(h) £=0.
) if (X.,Y.0) is a limiting point of the trajectory T. (X, Y) is a solution of the CPR

Theorem 3.2. Assume that Rz(t) € Byy for allt € [0,1]. Then
(a) t=0.
(b) the trajectory T is bounded. |

Now we arc ready to state a natural lincar continuation of the CP under some assump-
tions.

Theorem 3.3. Let (X", Y"), Ry € MY x MY such that (X" — Ry, Y’ — Ry) € F.
Let H X" Y" = A and A(t) = I‘A, Rz( =1tR for allt € [0,1). Then

(a) (A(t), Rz(t)) is a continuous mapping satisfying (2),

(b) t =0 and the trajectory T" with the linear continuation is bounded if and only if
the CP has a solution.





