Nonlinear Monotone Complementarity Problems in Symmetric Matrices

01206500	*Masayuki SHIDA	Kanagawa University
01204630	Susumu SHINDOH	The National Defense Academy
01103520	Masakazu KOJIMA	Tokyo Institute of Technology

Introduction

Monotone complementarity problems in symmetric matrices provide a unified mathematical model for various problems arising from statistics and control theory.

We will show the existence and the uniqueness of the weighted central trajectory which converge to a solution of the monotone complementarity problem if the interior of the feasible region of the problem is nonempty.

Denote \mathcal{M} : the set of all $n \times n$ real matrices, \mathcal{M}^{sym} : the set of all symmetric real matrices in \mathcal{M} , \mathcal{M}^{sym}_{+} : the set of all positive definite symmetric matrices in \mathcal{M} , \mathcal{M}^{sym}_{++} : the set of all positive semi-definite matrices in \mathcal{M} .

Now we consider a nonlinear monotone complementarity problem in symmetric matrices;

$$\mathbf{CP} \ : \ \mathrm{Find \ an} \ (X,Y) \in \mathcal{M}_+^{sym} \times \mathcal{M}_+^{sym} \ \mathrm{such \ that} \ (X,Y) \in \mathcal{F} \ \mathrm{and} \ \mathrm{Tr} \ XY = 0,$$

where \mathcal{F} is a maximal monotone subset of $\mathcal{M}^{sym} \times \mathcal{M}^{sym}$, i.e., $\operatorname{Tr}(X - X')(Y - Y') \geq 0$ for every $(X,Y), (X',Y') \in \mathcal{F}$ (monotonicity) and there is no monotone set which properly contains \mathcal{F} .

For $X \in \mathcal{M}$, we write $X \succ O$ if X is positive definite, and $X \succeq O$ if X is positive semi-definite. For the sake of simplicity, we use the following symbols;

$$\begin{split} \mathcal{F}(R_Z) &= \left\{ (X,Y) \in \mathcal{M}^{sym} \times \mathcal{M}^{sym} : (X-R_X,Y-R_Y) \in \mathcal{F} \right\}, \\ \mathcal{F}_+(R_Z) &= \left\{ (X,Y) \in \mathcal{F}(R_Z) : X \succeq O, \ Y \succeq O \right\}, \\ \mathcal{F}_{++}(R_Z) &= \left\{ (X,Y) \in \mathcal{F}(R_Z) : X \succ O, \ Y \succ O \right\}, \\ \mathcal{F}^*(R_Z) &= \left\{ (X,Y) \in \mathcal{F}_+(R_Z) : \operatorname{Tr} \ XY = 0 \right\}, \\ \mathcal{F}_+ &= \mathcal{F}_+(O) &= \left\{ (X,Y) \in \mathcal{F} : X \succeq O, Y \succeq O \right\}, \\ \mathcal{F}_{++} &= \mathcal{F}_{++}(O) = \left\{ (X,Y) \in \mathcal{F} : X \succ O, \ Y \succ O \right\}, \\ \mathcal{F}^* &= \mathcal{F}^*(O) &= \left\{ (X,Y) \in \mathcal{F}_+ : \operatorname{Tr} \ XY = 0 \right\}, \\ \mathcal{B}_+ &= \left\{ R_Z \in \mathcal{M}^{sym} \times \mathcal{M}^{sym} : \mathcal{F}_+(R_Z) \neq \emptyset \right\}, \\ \mathcal{B}_+ &= \left\{ R_Z \in \mathcal{M}^{sym} \times \mathcal{M}^{sym} : \mathcal{F}_+(R_Z) \neq \emptyset \right\}, \\ \mathcal{B}^* &= \left\{ R_Z \in \mathcal{M}^{sym} \times \mathcal{M}^{sym} : \mathcal{F}_+(R_Z) \neq \emptyset \right\}, \end{split}$$

where $R_Z = (R_X, R_Y) \in \mathcal{M}^{sym} \times \mathcal{M}^{sym}$.

Existence and Continuity of Weighted Centers

We consider the following mapping:

$$H(X,Y) = Y^{\frac{1}{2}}XY^{\frac{1}{2}}$$
 for $(X,Y) \in \mathcal{M}_+^{sym} \times \mathcal{M}_+^{sym}$.

Theorem 2.1. For every $A \in \mathcal{M}^{sym}_{++} \cup \{O\}$ and $R_Z \in \mathcal{B}_{++}$, the set $H^{-1}(A) \cap \mathcal{F}_+(R_Z)$ is nonempty. Moreover, if in addition $A \in \mathcal{M}^{sym}_{++}$, the set $H^{-1}(A) \cap \mathcal{F}_+(R_Z)$ consists of an unique point which is continuous in $\mathcal{M}^{sym}_{++} \times \mathcal{B}_{++}$.

Theorem 2.2. (1) \mathcal{B}_{++} is a nonempty open convex subset of $\mathcal{M}^{sym} \times \mathcal{M}^{sym}$.

(2)
$$\mathcal{B}_{++} \subset \mathcal{B}^* \subset \mathcal{B}_+ \subset cl\mathcal{B}_{++}$$
, where $cl\mathcal{B}_{++}$ denotes the closure of \mathcal{B}_{++} .

Theorem 2.3. The solution set \mathcal{F}^* of the CP is convex. Moreover, if $\mathcal{F}_{++} \neq \emptyset$, then \mathcal{F}^* is a nonempty and compact convex set.

3 Trajectory

From Theorem 2.1, for every $A \in \mathcal{M}^{sym}_{++}$ and $R_Z \in \mathcal{B}_{++}$, there exists a unique point $(X_{(A,R_Z)},Y_{(A,R_Z)})$ such that $(X_{(A,R_Z)},Y_{(A,R_Z)}) \in H^{-1}(A) \cap \mathcal{F}(R_Z)$ and it is continuous w.r.t. A and R_Z . In this section, we consider the trajectory T consisting of (X,Y,t)'s such that

$$(X(t), Y(t)) = H^{-1}(A(t)) \cap \mathcal{F}(R_Z(t)) \ (t \in [0, 1]), \tag{1}$$

and that

$$A(t), R_{Z}(t) \text{ are continuous on } t \in [0, 1], \\ A(t), R_{Z}(t) \to O \text{ as } t \to 0, \\ A(t) \in \mathcal{M}^{sym}_{++} \text{ for every } t \in (0, 1], \\ R_{Z}(1) \in B_{++}, \\ A(0) = O, R_{Z}(0) = O.$$
 (2)

To solve the CP, we numerically trace the trajectory until t gets sufficiently small.

If in addition, A(t) = tA(1), $R_Z(t) = tR_Z(1)$, we call the solution set of (1) the trajectory T^L with a linear continuation.

Let
$$\underline{t} = \inf\{t \in (0,1] : (A(t), R_Z(t)) \in \mathcal{M}_{++}^{sym} \times \mathcal{B}_{++}\}.$$

Theorem 3.1. Suppose that the trajectory T is bounded. Then

- (a) the trajectory T has at least one limiting point as $t \to \underline{t}$,
- (b) t = 0.
- (c) if $(\bar{X}, \bar{Y}, 0)$ is a limiting point of the trajectory T, (\bar{X}, \bar{Y}) is a solution of the CP.

Theorem 3.2. Assume that $R_Z(t) \in \mathcal{B}_{++}$ for all $t \in [0,1]$. Then

- (a) $\underline{t} = 0$,
- (b) the trajectory T is bounded.

Now we are ready to state a natural linear continuation of the CP under some assumptions.

Theorem 3.3. Let (X^0, Y^0) , $\bar{R}_Z \in \mathcal{M}^{sym}_{++} \times \mathcal{M}^{sym}_{++}$ such that $(X^0 - \bar{R}_X, Y^0 - \bar{R}_Y) \in \mathcal{F}$. Let $H(X^0, Y^0) = \bar{A}$ and $A(t) = t\bar{A}$, $R_Z(t) = t\bar{R}$ for all $t \in [0, 1]$. Then

- (a) $(A(t), R_Z(t))$ is a continuous mapping satisfying (2).
- (b) $\underline{t} = 0$ and the trajectory T^L with the linear continuation is bounded if and only if the CP has a solution.