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1. Introduction

Preventive maintenance policies are generally deter-
mined by minimizing the expected cost per unit time in
the steady state. However, maintenance managers are
often not satisfied with only the estimation of the ex-
pected cost. They require some additional information
regarding the variability of the cost to evaluate the risk
involved in industrial maintenance. In some cases, they
may prefer to accept some degree of increased expected
cost in order to reduce the variability of the cost. In are-
cent paper, Chen and Jin (2003) introduced the concept
of long-run variance of the cost to represent management
risk in preventive maintenance policies. Unfortunately,
their analysis involves serious mistakes. In this paper,
we offer the exact formulation of the long-run variance
of the cost for the age replacement and block replacement
policies. In numerical examples, we study the impacts
of risk-sensitive optimality criterion on the managerial
decision process.

2. Nomenclature

a (> 0) : preventive replacement interval; p : risk-
sensitive factor; C(¢;a) : accumulated cost during the
time interval (0,¢] when a system begins to operate at
time 0; M(t;a) : E[C(t;a)]; V(t;a) : Var[C(t; a)]; F(t)
. failure time distribution; F(¢) : survivor function of
F(t); c1, ca (c1 > c2 > 0) : costs of a failure replace-
ment and a preventive replacement, respectively for the
age replacement policy; ¢, ¢m (> 0) : costs of a pre-
ventive replacement and a minimal repair, respectively
for the block replacement (with minimal repair) pol-
icy; ®(a) (©(a)) : long-run average cost for the age re-
placement (block replacement with minimal repair) pol-
icy; ¥(a) (2(a)) : long-run variance of the cost for the
age replacement (block replacement with minimal re-
pair) policy. When there is no confusion, we abbreviate
C(t;a), M(t;a), V(t;a), as C(t), M(t), V(t), respectively.

3. Risk-sensitive age replacement policy

It is well known in the age replacement policy that if
the system does not fail until a prescribed time a then
it is replaced by a new one preventively. Otherwise, it
is replaced at the failure age. Under this policy, the
expected cost per unit time in the steady state is given
by (Barlow and Proschan, 1965)

The variance of the accumulated cost V(t) is given by

v(t) = E [{C() - M®)Y’]
—F [{C(t) — ot - (M) -’ (2)
Proposition 1 [Kawai and Tanaka (1987)]:
limg—, oo [M (t) — ®t] exists and is equal to
[cl / tdF(t) + cza F(a) + ® / t F‘(t)dt] /| F(t)dt.
0 : 0 0
Proposition 2 [Kawai and Tanaka (1987)]: Using

Proposition 1, the long-run variance of the accumulated
cost is given by

v = im
fo c1 — ®t)2dF(t) + (c2 — ®a)? F(a)
@)
Jo F(t)dt

Hence, following Chen and Jin (2003), the risk-sensitive
age replacement problem can be formulated as

min Ti(a) = [&(a))* + p¥(a). 4)

a€[0,00)
The decision maker is said to be risk averter if p > 0,
risk seeking if i < 0 and risk neutral if 4 = 0. Since the
decision makers are usually risk averse, we assume that
u=>0.

Remark: Chen and Jin (2003) defined the long-run
variance of the cost V;(a) for the age replacement policy
with replacement interval a as

Z

!

Vi(a) = O

where C; is the cost spent at time ¢t. Clearly, Vi(a) can
not represent the long-run variance of the cost under
the age replacement policy. Hence their cost-variability-
sensitive analysis is incorrect.

4. Risk-sensitive block replacement policy with
minimal repair

Suppose that the preventive replacement is executed pe-
riodically at a pre-specified time ka (k =1,2,3,---) with

®(a) = a1 F(a)+ c2F(a) (1) a repair cost ¢, (> 0). If the unit fails within a periodic
- [JF@dt replacement interval then minimal repair is performed
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with a cost ¢, (> 0) and the failure rate is not dis-
turbed by each repair. Let N(t; a) denote the number of
minimal repairs up to time £. Then, the stochastic pro-
cess {N(t;a),t > 0} is governed by a non-homogeneous
Poisson process (NHPP) with an intensity function r(t)
and a mean value function A(t), i.e.,

where 7(t) = f(t)/F(t) is the failure rate (or hazard
rate) of the failure time distribution. Following Barlow
and Hunter (1960), the expected cost per unit time in
the steady state is given by

_cmA(a) +c,
O(a) = —_—

(5)
Let K be a random variable denoting the total cost in-
curred during a preventive replacement cycle. Therefore,
K takes the values ¢, ¢, +Cm, Cr+2Cm, Cr+3Cm, -+, Cr +
JCm, -+ for N(t;a) = 0,1,2,3,---.,---, respectively.
Then we have,

2 e M {A(a)}"

E[K?%) =" (cr + nem) o

n=0

= 24 (2erem + ¢,) Aa) + 2, {A(a)}*. (6)

Therefore, Var|K] = E[K? — {E[K]}? = c2,A(a).
Hence, by applying Wald’s first and second moment
identities and renewal theory convergence theorems, the
asymptotic variance per unit time can be obtained as

Var[C(t; Var K 2 A

Q(a) — hm a’lr[ ( 10‘)] — a/l"[ ] — cm (a) . (7)
t—o0 t a a

Therefore, the optimization problem for the risk-

sensitive block replacement with minimal repair is

. | [ emAla) +cr 2 c2,A(a)
aéi[%)lgo)S(a)— {————a } + S }.(8)

Define the numerator of the derivative of S(a) with re-
spect to a as Z(a).

Theorem: (1) Suppose that the F(t) has strictly in-
creasing failure rate (IFR) property.

(i) If Z(co) > 0 then there exists a unique opti-
mal block replacement (with minimal repair) in-
terval a* (0 < a* < o0) satisfying Z(a*) = 0
which minimizes S(a). The corresponding time
average expected cost and variance in the steady
state are ©(a*) = [emA(a*) + ¢-]/a* and Q(a*) =
[c2,A(a*)]/a*, respectively.

If Z(co) < 0 then a* — oo and the correspond-
ing time average expected cost and variance in the
steady state are ©(c0) = c¢p,r(co0) and Q(c0) =

c2,7(00), respectively.

(2) Suppose that F'(t) has the strictly decreasing failure
rate (DFR) property, i.e., the failure rate is decreasing.
Then the optimal block replacement (with minimal re-
pair) interval is a — oo.

6. Numerical example

Suppose that the failure time follows the gamma dis-
tribution whose probability density function is f(t) =
e M) /T(n), t>0; A>0; n>0.

Table 1 Risk-sensitive age replacement policy
(A=10.2, n =3, ¢;= 2000, c2 = 400)

P a* ®(a*) U(a*) II(a*)

0.00 | 7.56217 | 100.103 75161.8 10020.6
0.02 | 6.95934 | 100.397 69130.4 11462.1
0.05 | 6.26719 | 101.661 61695.5 13419.8
0.10 | 5.49360 | 104.811 52821.0 16267.5
0.15 | 4.98881 | 108.316 46775.4 18748.6
0.20 | 4.63019 | 111.774 42394.9 20972.5
0.50 | 3.58713 | 129.003 29535.9 31409.8
1.00 | 2.94250 | 148.792 21806.7 43945.9
5.00 | 1.87335 | 219.575 10317.3 99799.4

Table 2 Risk-sensitive block replacement policy
(A=0.5, n =3, ¢.= 1000, ¢, = 200)

7 . a* ©(a*) Q(a*) S(a*)

0.00 | 89.5767 | 95.6342 | 16894.10 | 9145.89
0.02 | 84.8962 | 95.6405 | 16772.3 9482.55
0.05 | 78.6279 | 95.6736 | 16591.1 9983.0
0.10 | 69.8386 | 95.7898 | 16294.2 10805.1
0.15 | 62.6826 | 95.9782 | 16005.0 11612.5
0.20 | 56.7818 | 96.2334 | 157244 12405.7
0.50 | 36.2297 | 98.8379 | 14247.2 16892.5
1.00 | 23.3732 | 105.1840 | 12480.0 | 23543.8
2.00 | 15.0135 | 118.6190 | 10402.5 { 34875.6
5.00 | 8.9432 | 150.5670 | 7750.0 61420.5

The impacts of risk-sensitive optimality criterion on the
age and block replacememt polices are shown in Tables
1 and 2, repectively. Note that the risk-sensitive preven-
tive maintenance policy always reduces the cost variation
significantly with a small increase in the average cost in
the steady state.
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