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1 Introduction

Given a pair of non-negative integers m and n, P(m,n)
denotes the subset of 2-dimensional integer triangular
lattice points defined by P(m,n) aef- {(ze1+yes) |z €
{0,....m =1}, y € {0,...,n — 1}} where e;
(1,0), e aef- (1/2,4/3/2). Given a finite set of 2-

dimensional points P C R? and a positive real d, a

unit disk graph, denoted by (P,d), is an undirected

graph with vertex set P such that two vertices are ad-

jacent if and only if the Euclidean distance between

the pair is less than or equal to d. We denote the unit

disk graph (P(m,n),d) by T, »(d).

Given an undirected graph H and a non-negative
integer vertex weight w' of H, a multicoloring of (H, w')
is an assignment of colors to vertices of H such that
each vertex v admits w’(v) colors and every adjacent
pair of two vertices does not share a common color.
A multicoloring problem on (H,w’) finds a multicol-
oring of (H, w’) which minimizes the required number
of colors.

The multicoloring problem has been studied in sev-
eral context. When a given graph is the triangular
lattice graph T, »(1), the problem is related to the
radio channel (frequency) assignment problem. Mec-
Diarmid and Reed [3] showed that the multicoloring
problem on triangular lattice graphs is NP-hard. Some
authors [3, 5] independently gave (4/3)-approximation
algorithms for this problem. For coloring (general)
unit disk graphs, there exists a 3-approximation al-
gorithm [2, 6]. Here we note that the approximation
ratio of our algorithm is less than 1 + 2/v/3 < 2.155
for any d > 1.

2 Well-Solvable Cases and Per-
fectness

An undirected graph G is perfect if for each induced
subgraph H of G, the chromatic number of H, denoted
by x(H), is equal to its clique number w(H). The
following theorem is a main result of this paper.

Theorem 1 [4] Whenn > 1 and d > 1, we have the
following; Vm € Zy, Ty n(d) is perfect ] if and only

if d>/n? = 3n + 3.
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Table 1 shows the perfectness and imperfectness of
T n(d) for small n and d.

Table 1: Perfectness and imperfectness
d

- 1o | V7o | vIE | vET
1
2
3
4 Perfect
5

An undirected graph which is transitively orientable
is called comparability graph. The complement of a
comparability graph is called co-comparability graph.
It is well-known that every co-comparability graph is
perfect.

Lemma 1 Letd > 1 be a real number. Then, Ty, »(d)
is a co-comparability graph, if and only if n < 3EV4d=3 "‘;‘12_3.

The following lemma deals with the special case
that n =3, d=1.

Lemma 2 ForVm € Z4 and 1 <Vd < V3, the graph
Tom,3(d) is perfect.

Note that though the graph T, 3(1) is perfect, the
graph T, 3(1) is not co-comparability graph.

From the above, the perfectness of a graph sat-
isfying the conditions of Theorem 1 is clear. In the
following, we discuss the inverse implication. We say
that an undirected graph G has an odd-hole, if G con-
tains an induced subgraph isomorphic to an odd cycle
whose length is greater than or equal to 5. It is obvi-
ous that if a graph has an odd-hole, the graph is not
perfect.

Lemma 3 For Vn > 4, if 1 < d < vn?2—-3n+3,
then 3m € Zy, Ty n(d) has an odd-hole.

Lemma 3 shows the imperfectness of every graph which
violates a condition of Theorem 1.

Given an undirected graph G = (V| E) and ver-
tex weight vector w € ZK, the multicoloring number
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X(G,w) is the least number of colors required in a
multicoloring of (G, w). The weighted clique number
w(G,w) is the weight of a maximum weight clique in
(G,w). It is clear that x(G,w) > w(G,w).

Then we have the following.

Theorem 2 [4] When n > 1, the following property
holds; [ Vm € Zy and Yw € Z2™™),

X(Trm,n(d), w) = W(Timn(d), w) ]
if and only if d > v/n? — 3n + 3.

Assume that we have a co-comparability graph G
and related digraph H which gives a transitive orienta-
tion of the complement of G. Then each independent
set of G corresponds to a chain (directed path) of H.
The multicoloring problem on G is essentially equiva-
lent to the minimum size chain cover problem on H.
Every clique of G corresponds to an anti-chain of H.
Thus the equality w(G) = x(G) is obtained from Dil-
worth’s decomposition theorem. It is well-known that
the minimum size chain cover problem on an acyclic
graph is solvable in polynomial time by using an algo-
rithm for minimum-cost circulation flow problem.

In case that a given graph is (T, 3(1), w), we pro-
posed a strongly polynomial time algorithm for muti-
coloring (T 3(1), w) (see [4]).

3 Approximation Algorithm

When d = 1, McDiarmid and Reed [3] proposed an
approximation algorithm for (T5,, » (1), w), which finds
a multicoloring with at most (4/3)w(Tr, (1), w)+1/3
colors.

Theorem 3 [4] When d > 1, there exists a polyno- .

mial time algorithm for multicoloring (T, »(d), w) such
that the number of required colors is bounded by

2
V3
3+v4d2-3
I E—
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1+ { (T n(d), w)

Proof: We describe an outline of the algorithm. For
simplicity, we define K, <" |43 | ang f,
SIS 1| Zd).

First, we construct K, vertex weights w), for k €
{0,1,..., K — 1} by setting

0, yef{k,....,k+ L\/lgdj — 1} (mod K3),
K, {%@J , otherwise.

wi(z,y) = {
Next, we exactly solve Ky multicoloring problems de-
fined by K pairs (T, ,(d),w}), k € {0,1,...,Ks —
1} and obtain K, multicolorings. We can solve each

problem exactly in polynomial time, since every con-
nected component of the graph induced by the set of
vertices with positive weight is a perfect graph dis-
cussed in the previous section. Thus x(Tm n(d), w}) =
w(Tm n(d), w}) for any k£ € {0,1,...,K, — 1}. Put
w"’ =w —Z,}C(__Q_O_ " w,. Then each element of w” is less
than or equal to K7 —1. Thus we can find a multicolor-
ing of (Tr,n(d), w”) from the direct sum of K —1 triv-
ial colorings of T, ,(d). The obtained multicoloring
uses at most (K7 —1)x(Tm,n(d))colors. Lastly, we out-
put the direct sum of K5 + 1 multicolorings obtained
above. The definition of the weight vector wj, implies
that Vk € {0,1,..., K2 — 1}, Ky w(Tmn(d), w}) <
w(Tpmn(d), w). Thus, the obtained multicoloring uses
at most

(K2/K1)W(Tm,n (d)a w) + (Kl - l)X(Tm,n(d)) colors. |

We have also shown the following hardnéss result.

Theorem 4 [4] Let d be a constant rational number.
Given a pair (Tmn(d),w), it is NP-complete to de-
termine whether (T, »(d),w) is multicolorable with
strictly less than (4/3)w(Tm. »(d), w) colors or not.
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