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1 Introduction

The marriage model due to Gale and Shapley (2]
and the assignment model due to Shapley and
Shubik [4] are standard in the theory of two-
sided matching markets. We give a common
generalization of these models by utilizing M-
concave utility functions and show the existence

of a pairwise stable outcome in our general model.

Our present model is a further natural extension
of the general model examined in our previous

paper [1].

2 M-!-Concavity

We briefly explain the concept of MP-concave

functions (see [3] for details). Let E be a nonempty

finite set, and let Z and R be the sets of inte-
gers and reals, respectively. We denote by ZZ
the set of integer vectors z = (z(e) | e € F)
indexed by E, where z(e) denotes the eth com-
ponent of vector z. Also, RF denotes the set of
real vectors indexed by E. Let 0 be a vector of
all zeros of an appropriate dimension. For each
e € E, we denote by x. the characteristic vec-
tor of e defined by: xe(e) = 1 and xe(¢/) = 0
for ¢ # e. For a vector p € RF and a function
f:ZF — RU{~oo}, we define the function f[p]
in z € ZF by

flol(z) = £(z) + >_ ple)z(e).

eeE

We also define the set of maximizers of f on
U C ZF and the effective domain of f by

argmax{f(y) |y € U} =
{zeU|WelU: flz) = flv)},
dom f = {z € Z” | f(z) > —oo}.

A function f : ZF — RU{—o0} with dom f # 0
is called M!-concave if it satisfies?

! Condition (M") is denoted by (—M!-EXC) in (3].
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(M%) Vz,y € dom f, Ve € {i | z(i) > y(i)},
e’ € {i| z(i) < y(i)} U {0} :

f@)+f(y) < f@—XetXe )+ (Y+Xe—Xe),

where 0 is a new element not in E and xg
is a zero vector in ZZ.

If f is Mt-concave, then f[p] is also MP-concave
for any p € RE.

3 Model Description

We consider a two-sided market consisting of dis-
joint sets M and W of agents, in which an agent
in M may be called a worker and one in W a
firm. Each worker ¢ € M can supply multi-units
of labor time, and each firm 7 € W can employ
workers with multi-units of labor time and pay
a salary to worker ¢ per unit of labor time if j
hires 1. We assume that each pair (4, ) has lower
and upper bounds on a salary per unit of labor
time. We will discuss pairwise stability in this
market.

Let E = M x W, i.e., the set of all pairs
(i,7) of agents i € M and j € W. Also de-
fine E;) = {i} x W for all i € M and E(; =
M x {j} for all j € W. Denoting by z(i, j)
the number of units of labor time for which j
hires 4, we represent a labor allocation by vec-
tor = (z(4,5) | (4,5) € E) € Z¥. We express
lower and upper bounds of salaries by two vec-
tors 7 € (RU{—c0})? and 7 € (R U {+00})F
with # < 7. ForyEREandk:EMUW,
we denote by y(r) the restriction of y on (.
We assume that a utility (in monetary terms) of
each agent k € M UW is described by a function
fi : ZP® — R U {—o0}, and furthermore, that
fr satisfies the following assumption:

(A) dom fx is bounded and hereditary, and has
0 as the minimum point,
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where heredity means that for any y, 1y’ € ZE®,
0 <y <y € dom fx implies 3/ € dom f.

A vector z € ZF is called a feasible allocation
if z(3) € dom f for all k € M UW. Given a
feasible allocation z, a vector s € RF is called an
x-compatible salary vector if n(i,7) < s(4,7) <
7(i, ) for all (i,5) € E with z(i,5) > 0 and
if s(i,7) = 0 for all (4,7) € E with z(4,j) =
0. We call a pair (z, s) of a feasible allocation
z € ZF and an z-compatible salary vector s €
RE an outcome. An outcome (z, s) is said to be
individually rational if

fil+swl(zw) = max{fi[+su)l(v) | v <z}
(Vie M), (1)
fil=s(p)l(z)) = max{fj[-s»](W) |y <z}
(Ve W). (2)

Conditions (1) and (2) mean that each agent has
no incentive to decrease labor time for the cur-
rent salaries. For s € R, o € R, i € M and
j € W, let (s(_zg ,a) be defined as the vector
obtained from s(;) by replacing its jth compo-
nent by «, and (5(7), «) be similarly defined. An
outcome (z, s) is called pairwise unstable if it is
not individually rational or there exist i € M,
j €W, ac€ [x,7),7675)], ¥ € ZF® and
y" € ZF such that

fil+s@) (@)

< fil+(sg @), 3)
y'(i,5) <

<

<

(
z(i,5") (V' € W\j), (4)
fj[_(s(_jz)’a)](y”)v (5)
z(i',7) (Vi' € M\i), (6)
y"(6,9) (7)
Conditions (3)~(7) say that ¢ and j can strictly
increase their utilities by concertedly changing
the current salary and labor time between them
under the constraints that units of labor time
of the other parts are not increased. An out-
come (z,s) is called pairwise stable if it is not
pairwise unstable. We also consider a stronger
pairwise stability. We say that an outcome (z, s)
is pairwise quasi-unstable if it is not individu-
ally rational or there exist : € M, j € W, a €
[z(i,9),7(,9)], ¥ € Z%® and y" € ZF0 satis-
fying (3)~(6) (but not necessarily (7)). Triv-
ially, a pairwise unstable outcome is pairwise

fil=s) (@)
y' (@, 5)
y' (4, 7)

quasi-unstable. An outcome (z, s) is called pair-

wise strictly stable if it is not pairwise quasi-

unstable. Thus, an outcome (z,s) is pairwise

strictly stable if and only if (1) and (2) hold

and for all : € M, j € W and a € R with
x(i, ) < a < 7(i, ),

fil+s@l(z@y) > maX{fi[Jr(S@f;a)](y) | (8
y(i,5") < z(i,5), V5" # 5},

or

filsgllag) 2 max{f{=(s5,0l0) | g
y(i,4) < a(i', ), V&' # i).

Note that any pairwise strictly stable outcome
is pairwise stable.

The concept of pairwise stability in our model
coincides, in special cases, with those in the mar-
riage model due to Gale and Shapley [2], the as-
signment model due to Shapley and Shubik [4],
and so on.

The following theorem states that the exis-
tence of a pairwise strictly stable outcome, and
hence, the existence of a pairwise stable out-
come, is certified by MP-concave utility functions.

Theorem 3.1 For M-concave functions fj (k €
M U W) satisfying (A) and for all vectors m €
(RU{—0o})F and 7 € (RU {+00})F with = <
T, there exists a pairwise strictly stable outcome
(z,s), and hence, there exists a pairwise stable
outcome.
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