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1 Introduction

Queueing networks are important models in the
performance analysis of complex systems such
as computer/communication networks and flexi-
ble manufacturing systems. Efficient algorithms
have been developed for computing performance
measures of separable networks that have a
product-form solution. Unfortunately, most of
real systems are not separable, which makes ap-
proximate analysis based on decomposition a
practical necessity.

The idea of decomposition approximation
has been successfully applied to open queue-
ing networks with general service times. For
closed queueing networks, however, the situa-
tion becomes more complex due to the constant
population constraint in the network. There
are two well-known methods for non-separable
closed queueing networks, i.e., the aggregation
method [1] and the ezponentialization approach
[2, 3]. The common idea of these methods
is to transform the original network into an
approximately equivalent exponential network,
where each station has exponential service times
with state-dependent rates. In the aggregation
method, this transformation depends only on the
mean service time of each station, so that it fails
for networks with general service times. On the
other hand, the idea of the exponentialization
approach is to analyze each station with a state-
dependent arrival rate and a service rate equal
to conditional throughput, which enables us to
take account of general service times. It has been
known that this approach provides sufficiently
accurate results, but that the computational load
is very heavy.

In this paper, using a diffusion approximation
for state-dependent queues with finite capacity,
we modify the exponentialization approach to
develop a fast approximation for a general class
of closed queueing networks.

2 General Closed Queueing Networks

Consider a closed queueing network in equilib-
rium with M service stations and N customers,
in which we assume that

1. the routing probability p;; that a customer
leaving station i enters station j is inde-
pendent of the state of the system (3,5 =
L...,M);

2. customers are served under the first-come
first-served discipline at all stations;

3. service times of customers at station i are
ild with a general distribution and inde-
pendent of the arrival process at station ¢
(i=1,...,M);

4. station 7 has s; (> 1) identical servers in
parallel and a limited local buffer with ca-
pacity 7, (> 0) (¢ = 1,..., M), and hence
the maximum number of customers allowed
at station 7 is n; = min(s; + r;, N), where
Z?.’I_.l n; > N > max; s;.

The system is further specified by the fol-
lowing notations: For each server at station 4
(i =1,...,M), let F; be the service-time cdf
with finite mean ;' and let ¢? be the squared
coefficients of variation of F;. Let N; denote
the number of customers at station i and let
pi(n) =P(N;=n)(i=1,...,M,n=0,...,n;).
The problem we focus on here is to obtain all of
the marginal distributions {p;(n)}.

3 The Exponentialization Approach

Let v;(n) be equivalent service rate at station i in
the equivalent exponential network when N; = n
(t=1,...,M,n=0,...,n;), where 14(0) = 0
for all . Also let pf(n) denote the marginal
probability of having n customers at station 7 in
the exponential network characterized by the set
of service rates {v;(n)}. Obviously, the success
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of the exponentialization approach strongly de-
pends on how to approximate {v;(n)} for which
pi(n) =pi(n) (i=1,...,M,n=0,...,n;). The
exponentialization approach can be summarized
by the following algorithm:

StepO0 Fori=1,...,M and n=0,...,n;, set
pi(n) = min(n, s;) ;.

Step 1 Solve the exponential network charac-
terized by the set of service rates {u;(n)}
and the routing matrix P = (p;;) to ob-
tain the marginal distribution {p}(n)}. For
1=1,..., M, set

0, n=mn;
pi(n+1)

M(n) = pi(n)

ﬂ'i('n’+1)7

0§n§ni—1.

Step 2 For ¢ = 1,...,M, analyze station %
as an isolated M(n)/G/s;/n; queue hav-
ing Poisson arrivals with state-dependent ar-
rival rates {\;(n)} and the service-time cdf
F;, obtaining its steady-state distribution
{mi(n);n = 0,...,n;} as an approximation

for {pi(n)}.
Step 3 Fori=1,...,M, set

0, n =

Wi(n—l)
W‘/\i(n—l),

If max; p, |pui(n) —vi(n)| < € for a given error
bound € > 0, then p;(n) := m;(n) for all 4
and n, and stop; otherwise set p;(n) := v;(n)
for all ¢ and n, and go to Step 1.

vi(n) := 1<n<n,.

In each iteration of Step 2, Marie [2] proposed
to calculate {m;(n)} exactly by using the Coxian
service-time distribution. Clearly, this increases
‘the computational time significantly. In this pa-
per, we will simplify the calculation in Steps 2
and 3 by using a diffusion approximation for
the M(n)/G/s queue with finite capacity. The
simplification makes the exponentialization ap-
proach be more tractable as a quick modeling
tool for performance evaluation.

4 Diffusion Approximation for {v;(n)}
Fori=1,.... M andn=1,...,n;, let
ai(n) = Ai(n — 1) + min(n, ;) d2(n),
bi(n) = Ai(n — 1) — min(n, s;)u;,
d(n) = 1+ Lnzy (n)(1 = p}(0))(cf — 1),
2bi(n)}
ai(n) J’

&) = (%(1) - 1) T w(k),
k=2

Also, fori=1,..., M, let
a; = Ai(0) and B = siu;.

Then, the diffusion approximation for {m;(n)} is
given by A

vi(n) = exp {

071
7&(0)%&(”),
o bi(nq)  &i(na)
Bi bi(1) yi(ny) =1
from which we can explicitly obtain v;(n) in
Step 3 as o

7rz(n) =
m;(0)

n = Ng,

0, n=20
b;(1)
e n=1
7i(1) — 1
¥i(n)
B vi(ng)—1 '
Ai(ni—1), n=n;.
L 0i(n)  vi(ng) i )
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