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Full-information rank minimization problem in PPP
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1 Introduction

The full information rank minimization problem(abbreviated to FIRM problem) can be described as follows:
7 options, repreéented by n iid. continuous random variables Xi,..., X, with known distribution, arrive
sequentially, and one of them must be chosen. The objective is to minimize the expected rank (among the ranks
of X1,...,X5) of the option chosen, where the best object, i.e., the one with largest X-value, has rank one,
etc. The FIRM problem was studied by Bruss and Ferguson(1993), and then by Assaf and Samuel-Cahn(1996).
Both Bruss and Ferguson(1993), and Assaf and Samuel-Cahn(1996) are mainly concerned with studying the
classes of the threshold rules, because the optimal stopping rule is very complicated in a sense that it depends
on the whole sequence of observations. As an important class of threshold rule, Asaaf and Samuel-Cahn. refere
to the (a, c)-threshold rule defined in Section 2.2, but they do not derive the limiting expressioh for'the expected
rank under that rule(see Remark 6.2). In this note, we attempt to derive the explicit form for it as well as
the explicit form for the expected rank attainable under the c¢/(1-t)-threshold rule defined in section 2.2, via
PPP(planar Poisson process) model, which greatly facilitates the derivation of the limiting value for some full
information problems. See, e.g., Gnedin(1996), (2003), Samuels(2003) and Mazalov and Tamaki(2003).

2 Explicit expression for the expected rank

As in Samuels(2003)(see his Sec.9), we employ a planar Poisson process with unit rate on the space 7 x Y =
[0,1] x [0,00). The options are identified as atoms on the PPP. This setting turns the problem upside down,
thus making Best=Smallest. We scan the process from left to right, and the best, second best, etc., arrivals
have values which are sums of i.i.d. exponential (with mean 1) random variables, and arrive at i.i.d. uniform

(0,1) times which are independent of the values.

2.1 ¢/(1 — t)-threshold rule

We shifts an infinite vertical detector in the positive direction of ¢t and choose the first atom encountered that
is located under ¢/(1 — t) thresholds. Let R denote the (absolute) rank of the atom chosen in this way and
(T,Y) denote the coordinates of this atom. It is easy to see that the density function of T is given by

fr®) =c1 -t 0<t<l1, - (1)

and conditional on T = t, Y is uniformly distributed on (0,¢/(1 — t)). Let R(¢,y) denote the rank of the atom
chosen at state (T,Y) = (¢,y). Then we have

Bl = | { |7 BiRe, y)l%dy} fr(t)dt. -
The following lemma yields E[R(t,y)]. ‘

Lemma 2.1 .
' 1+ (1-t)y, ifo<y<ece

E[R(t,y)] = :
(R(t,v)] l+(1_t)y+(y_c)+clog(§>, ifc<y< s
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Hence, applying this and (1) to (2) yields.

1 o o
ElR] =/0 [ng i C{ (?1 _tg log(1 ”)}]‘0(1 — )t =1+ g + ——-—621 -

Wthh coincides with Eq.(4.14) of Assaf and Samuel-Cahn.
Remark: In a'similar way, the expected rank under ¢/(1 — t)2-threshold rule can be calculated to. yield

-7 27 & 1 ® gmcu
E(R) = — .—1 f . _Z 23,
(R) 6+vc +3c 5 +60 eA/1 u_du,

2.2 (a,c)-threshold rule
The (a, c)-threshold rule, 0 < a < 1, is the same as the c/(1 — t)-threshold rule expect that this rule only
chooses a relatively-best atom if it appears before time a. As’in section 2.1, we denote by R the rank of the

atom chosen under the (a, ¢)-threshold rule. Then we have the followmg result.
Theorem 2.2

B[R = c+1 [1 1+ (c=1)a ]_ﬁ%

> TiTE-na-0)°
1.
2(cZ — 1)a?(1 -

+ (‘1) [{&(c +1) - (F+P+ec—1)(1-a) ele—1)1 ~ a)3}é—c;i |

-—{2c+ (c® +2¢% — 6+ 1)(1 — @) — c(c? + 3¢ — 4)(1 — q)Q}ef%}
Sl et =)

B —u
I(ﬁ,a)=/ f—l—t—du

Unfortunately, numerical expenences show that (a, c) threshold rule gives no significant improvement over
(0, c) -stopping ru]e for example E[R] = 2.33044 for @ = 0.42, ¢ = 1.95, while E[R] = 2.33182 for a=0,c=1095.
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