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1. Introduction

Quorum systems have been studied as a coordination method for distributed systems, such
as mutual exclusion, data replication and dissemination of information. A quorum system
is a collection of sets over an underlying processors, where arbitrary two sets intersect, that
is, they share at least one common processor. The sets are called quorums. Each processor
tries to access all the processors in any quorum, and if it can get permission from them,
it can enter its critical section. However, if other processor has already entered its critical
section, there exists some common processors which do not give permission.

There are several criteria to evaluate quorum systems. Availability, the frequently used
measure, is the probability that the system is operating when failures occur. Load balancing
is the measure of avoiding network congestion. Probe complexity, investigated in this report,
is the cost of probing if the system is available or not. More precisely, we have to search
for a live quorum, in which all the processors are nonfaulty. If there is no such quorum, we
cannot use the system. Thus we may learn the state of the system by probing the processors
one by one until finding a live quorum or an evidence that no live quorum exists.

Our approach is a game theoretic method. First, we formulate as a two-person zero-
sum game between the person who breaks down the system and the person who probes the
system. The game value would mean the minimax cost of probing.

Since Garcia-Molina and Barbara (1985) presented the concept of ”coterie”, a lot of
related work has been done in this area. They introduced the concept of ” domination” and
showed several properties of non-dominated coteries. Recently, Peleg and Wool (2002) intro-
duced the probe complexity, the expected overhead of message complexity due to failures.
Furthermore, Hassin and Peleg (2001) extended the probe complexity to the case where each
processor fails with some fixed probability. '

2. Game-theoretic Model

For any finite set X, we denote by |X| the cardinality of X.

First we state the problem in the general case. There are n points, numbered as 1,...,n
Let U ={1,...,n}. Let Q(U) ={Tx,...,Tx} be a subset of 2V satisfying

1) T,NnT; #0 forall i#j and Ty¢7; for all 4 +#3j.

Let & is the set of all permutations on U. Let o € =. Let I(0,5) = {o(1),...,0(s)} for all
ji=1...,n

Lemma 2.1. Suppose S CU. Then the only one of the two cases holds:
(i) For some j and some ¢, I(o,5)\S 2 Tp.
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(ii) For any ¢,T,gU\S.

Furthermore, (ii) is equivalent to :

(iii) For some j , I(0,5)NSNTe # 0 for any ¢. _

Now we define a zero-sum two person game related to Q(U). There are two players (Player

I and Player II). Player I chooses S € 2V and Player II chooses a permutation ¢ on U.. The

payoff, f(S,0), to Player I is defined by :
either

0 the case (i) in Lemma 1.1 first occurs at j
or '
the case (iii) first occurs at j

(2) f(S,0) =

The case (i) in Lemma 1.1 means that after the examinations of j points Player IT has found
‘that the system works. The case (iii) in lemma 1.1 means that after the examinations of j
points Player II has known that the system is down.

The payoft to Player IT is —f(S,0). So Player I is the maximizer of f and Pla,yel II is
the minimizer. The startegy spaces of Player I and Player II can be expressed by 2V and =
respectively. (f;2V,%)1s a two-person zero-sum game. The mixed extension of this game is de-
noted by (f; P,Q) where p € P is a 2"-dimensional vector satisfying Y sc,v p(S) =1and  p(S) >
0for all $ € 2V and ¢ € @ is an n!-dimensional vector satisfying 3" .- q(c)'= 1 and q(o) >
0 for all o € . For p € P and q € Q, we define f(p,q ) 2362(, ses f(S,a)p(S)e(o). ‘
3. The Wheel . _

We solve the two-person game when Q(U) is, what is called, the wheel, ie., T; = {1,5} for all
j=2,...,nand U_; =U\{1}, and ' ‘

. Q(U) = '{TZa e -aT'r’u U—1}~

Theorem 3.1. An optimal strategy of Player L is :

{p({l}) =p(U-1) = 52 and p(T;) = p(U\Ty) = 7y fOI” 311 J
(S) =0 for all other . .

An optlmal strategy for Player II is :

q(lig, ..., i) = 2 ~ for any permutatlon ig,...,0p Of 2,....m;
q(i1, ... in—1,1) = 252 for any permutation i;,...,i,—; of 2,...,n.

The value of the game is : n—1+ 2.
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