2003FEHEARL—2 a2 X - UH—F%4
MERFERES

An O(nlog”n) Algorithm for the Optimal Sink Location
Problem on Dynamic Tree Networks

02602474 Osaka University
01013640 National Institute of Informatics
01605984 Osaka University
01502254 Kyoto University

1 Introduction

A dynamic network includes transit times on
edges. We present a compound problem of a
dynamic network flow and a sink location in a
tree network. A location problem based on a
dynamic flow is a variation of the quickest trans-
shipment problem which is to send exactly the
right amount of flow out of each source and into
each sink in the minimum overall time. Hoppe
and Tardos[1] presented the first polynomial-
time algorithm for the quickest transshipment
problem. However, their algorithm is not effi-
cient enough. Hence, in this paper, we consider
the problem in a simpler network of tree struc-
ture. This problem can be regarded as a dynamic
flow version of the 1-center problem in a tree net-
work.

We adopt a sophisticated data structure, an
interval tree. We show that by using interval
trees the sink location problem can be solved in
O(nlog? n) time which improves upon the previ-
ous results [2]. Here, n is the number of vertices
in the network.

2 Problem Description

We consider a dynamic tree network N' = (T =
(V,E),c,1,d), where V is a set of vertices, F is a
set of edges, ¢ : E — R is the upper bound for
the rate of flow that enters each edge per unit
time, 7 : E — R4 is a transit time function,
and d: V — Ry is a supply function. Here, R
denotes the set of all nonnegative reals.

The problem to be considered here is to find
a sink ¢ € V such that we can send given ini-
tial supplies d(v) (v € V \ {t}) to sink ¢ as
quick as possible. Suppose that we are given a
sink ¢ in T. Then, T is regarded as an in-tree
T(t) = (V, E(t)) with root t, i.e., each edge of
T is oriented toward the root . For any arc
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e € E(t), any § € Ry, we denote by fe(0)
the flow rate entering arc e at time € which ar-
rives at the head of e at time 6 + 7(e). We call
fo(0) (e € E(v*), 8 € Ry) a continuous dy-
namic flow in T'(v*) (with a sink v*) if it satisfies
the following three conditions; (1) capacity con-
straints, (2)flow conservation, and (3)demand
constraints.

For a continuous dynamic flow f, let §; denote
the completion time for f and let C(v*) denote
the minimum 6; among all continuous dynamic
flows f in T(v*). We study the problem of com-
puting a sink v* € V with minimum C(v*).

3 Algorithm

In the algorithm, we keep two tables, Arriving
Table A, and Sending Table S, for each vertex
v € V. Arriving Table A, represents the sum
of the flow rates arriving at the vertex v as a
function of time 0. Sending Table S, represents
the flow rate leaving the vertex v as a function
of time . We describe Algorithm Single-Phase
which is simpler than the algorithm proposed in
(2]. v

Intuitively, our algorithm first constructs Ar-
riving Tables A, for all leaves v. Then we find a
leaf v* which is not an optimal sink (more pre-
cisely, a leaf v* such that T has an optimal sink
other than v*), and remove it from 7. If some
vertex v becomes a leaf of the modified tree T,
then the algorithm computes Arriving Table A,
for this vertex v by using Arriving tables for the
vertices that are adjacent to v and have already
been removed. The algorithm repeatedly applies
this procedure to T" until T becomes a single ver-
tex ¢, and outputs such a vertex ¢ as an optimal
sink.

For adjacent vertices v and p(v) in T, deleting
edge {v,p(v)} from T yields two connected com-
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ponents.
containing v and by T'(p(v),v) the one contain-
ing p(v). Time(v,p(v)) represents the comple-
tion time in which all the initial supplies d(v)
(v € T(v,p(v))) can be sent to p(v) as quick as
~ possible.

Algorithm SINGLE-PHASE

Input: A tree network N = (T = (V, E); ¢, 7, d).
Output: An optimal sink ¢ that has the mini-
mum completion time C(t) among all ver-

tices of T'.

Step 0: Let W := V, and let L be the set of
all leaves of T'. For each v € L, construct
Arriving Table A,.

Step 1: For each v € L, construct Sendmg Ta-
ble S, from v to p(v) based on ceiling A4, by
“¢(v,p(v)), where p(v)-is a vertex adjacent to
v in T. Compute the time Time(v,p(v)).
Step 2: Compute a vertex v* € L such that
Time(v*, p(v*)) minyez, Time(v, p(v)).
Let W := W\ {v*}, L:= L\ {v*}.
If there exists a leaf v of T[W] such that v
is not contained in L, :
then :

Denote by ‘T'(v, p(v))- the ‘component..

-sophisticated: data structures for them so that

.we can efficiently. handle three basic operations,
' *Add-Table (i:e., adding tables), Shift- Table (i.e.,

Let L:=LU {v} Construct Arriving Table
A, based on adding Sending Table S, shifted
by 7(v',v) for the vertices v’ that are adjacent
to v in T and have already been removed from

w.

Compute Sending Table S, from v to p(v)
. based on A, where p(v) is a vertex adjacent

" to v in T[W].
Compute the time Time(v,p(v)).
Step 3: If |[W| = 1, then output ¢ € W as an
optimal sink. Otherwise, return to Step 2.-
O

Note that in Step 2, at most one leaf v of T[W]
is-not contained in L, and L is always the set of
all leaves of T[W] after Step 2.

4 Data structures for A, and S,

We consider data structure for. Arriving Table
A, and Sending Table S,. Algorithm SINGLE-
PHASE requires O(n?) time if explicit representa-
tions are used for A, and S,. Therefore, we need

shifting a table), and Ceil- Table (i.e., ceil a table
by'some capacity c¢). We adopt interval trees to
represent tables, which are standard data struc-
tures for a set of intervals, since our tables can be
regarded as sets of intervals. It is known that in-
terval trees can handle operations Add- Table and
Shift- Table efficiently. HoWever, interval trees.
do not seem to handle operation Ceil-Table effi-
ciently if we 1mplement interval trees straightfor-
wardly. We develop a method to represent those
tables implicitly. The method can handle all the
three operations efficiently. Although we skip
the details, by applying it to algorithm SINGLE-
PHASE, we have an O(nlog?n) time algorithm.

Theorem 4.1: The sink location problem on dy-
namic tree networks can be solved in O(n log? n).

5  Concluding Remarks

We have described our result on an algorithm
for .quickest flows in a tree network. Finally,
we note that the sink location problem for dy-
namic flows can further be extended in many di-
rections. Some of them are (1) to find a sink
to which we can send a flow of maximum value
from sources within given fixed time, (2) to con-
sider the sink location problem on general (non-
tree) dynamic networks, and (3) to consider a
multiple-sink location problem These are left
for future research. '
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