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Abstract — Stochastic programming is a pro-active approach for decision making under uncertainty.
However, a drawback of traditional stochastic linear programming is the lack of consideration of the
variability of recourse costs. A novel formulation named robust optimization is recently gaining
interest. Yet, when applying robust optimization to two-stage stochastic program, the model is in
non-linear form and not separable by scenarios. This resulted that the second-stage problem, cannot
be directly divided into smaller sub-problems, challenges the traditional solution scheme to standard
linear program. In this paper, we propose an iterative parametric separation scheme. The second-
stage problem can then be separated into a series of smaller problem. Efficient solution scheme can
then worked out. A design flow diagram is also presented for developing a decision support system
for such a problem.

INTRODUCTION
Classical mathematical programming approaches are usually assumed the system parameters are
given in deterministic. When solving such a problem under an uncertain environment, the general
approach by using the classical mathematical programming model is to assume these parameters are
well estimated by their corresponding expected value. However, it is found that a large error bound
may arise if one attempts to adopt this mean-value approach. [1]

Early in 1950s, operation researchers recognized that the demand to take some pro-active approaches
to consider the stochastic nature of the problem at the very beginning of modeling. One of widely
adopted approaches is the stochastic programming [2,3]. One of the main streams in modeling the
stochastic problem is to use the concept of recourse. The decision maker first choose a decision,
some corrective actions are then taken after a realization of the random event. The objective is thus
to minimize the total cost for first-stage and expected recourse cost for second-stage.

Most methodologies to solve the recourse problems are based on the decomposition principle and
cutting planes algorithm. The most popular one is L-shape method by Van Slkye and Wets [4].
However, it has been argued that the linear stochastic program is not able to consider the variability
of the uncertainty. The lack of consideration of variability will create some problems for decision
maker. The standard stochastic linear programming is based on the expected recourse cost. When an
extreme case of realization is given, the actual recourse cost can be very high. In this case, a
company may run in to a financial problem if variability was not considered.

A recent approach by Mulvey et al [5] called robust optimization is to incorporate the variability of
recourse cost into the planning. Similar to literatures in financial optimization and risk management,
variance is usually used as the measurement of variability. However, when applying to two-stage
stochastic program, the introduction of this higher-moment term creates challenges to traditional
methodology. The L-shape method become handicapped as the variance term is not linear and is not
separable by scenarios.



In this paper, we propose an iterative parametric separation scheme for the robust-optimization in
two-stage stochastic program. The organization of this paper is as the following. Section 2 will
briefly discuss the L-shape, which is the core concept for solving two-stage stochastic linear program.
Robust optimization will be briefly discussed in section 3. We will also attempt to apply the robust
optimization to the two-stage stochastic program. In particular, the challenges for solving the robust
optimization second-stage recourse function will be highlighted. In section 4, we will establish our
iterative parametric separation scheme for such robust optimization recourse function. In section 5, a
design block diagram for the two-stage stochastic program with robust optimization will be
presented. Some conclusion and recommendation will be provided in last section.

TWO-STAGE STOCHASTIC LINEAR PROGRAM

For simplification in our discussion, we assume the stochastic nature is discrete and modeled by
scenario representation. Define Q is a collection set of all possible scenarios s =1,2,...,S such that

s
Q= {s |p, 20,3 p, = 1}. A general stochastic linear program in extensive form is as the following,
s=1
[SLP_EF]
s
Min  c'x+3p, l0.75.)
s=

st. Ax=b €))
W.y,=h,-Tx s=12,..,S
x>0y, =0 s=12,..,S

Where x ER™ is the first-stage decision vector. c¢ER™ is the cost coefficients, and Ax =b,
x > Oare the constraints on x with A€ R™" and bER™' . We denote X = {x | Ax = b, x = 0} as the
feasible set for first-stage decision variables.

While in the second-stage, for scenario s (s=12,...,5), y, €R" is the decision variable under
scenario §, ¢, €R™ is the cost coefficient corresponding to scenario s . We denote the feasible set as

Y, ={y, |W.y =h, -T,x,y, = 0}with W, ER™": | hER™ and T, ER™" .

When problem is small, the extensive form can be solved by standard linear optimization package.

But, when the number of scenarios is large, the problem in extensive form becomes a large-scale

N

’ ) decision variables, and totally m, +(m1 +mf +A +ms)

2

roblem. There are n, +{n' +n> +A +n
p 1 ) 2

constraints.

The formulation indeed has a special block structure. We can apply decomposition principle and
embed the second-stage cost as a function of x. The linear program is then decomposed into a series
of sub-problems for second stage (with given x), and a master problem.

Decomposition for Stochastic Programming
A master problem of two-stage stochastic programming is as the following

[Master Problem]
Min  c"x+0(x)
st Ax=b 2)
x20
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The function @(x) is called recourse function. In standard version of stochastic linear programming,
the recourse function ©(x) is the expected value of recourse for all different actions corresponding
to different realizations of uncertainty. Define sub-problem for scenario s as
9. ()= Min q,"y
st.  Wy=h -Tx (3)
y=0
and
0(x)=Elp, (x)] ©)
In each sub-problem, the scale for problem is reduced. For a particular s, the number of decision
variable is only n} and number of constraints is only m;. Another obvious advantage is the sub-

problems can be run in parallel if parallel computing equipment is available.

- Based on this decomposition approach, Van Slkye and Wets developed a well-known solution
scheme, called L-shape method, for the stochastic linear programming. While utilizing the
decomposable property of the model, they incorporated cutting algorithms in the solution scheme.
The lower bound of ©(x) is denoted by a parameter 6. The value of ©(x) in the master problem is
then approximated by sequentially adding cutting planes to the problem until the feasibility and
optimality are reached. The cutting planes are expressed in terms of @ and x with coefficients
obtained from the sub-problems.

In each iteration, each sub-problem of linear optimization is feasible if and only if the following
condition is satisfied.

7. (b, ~T,x)=0 )
where 7, is the dual multipliers for the sub-problem of scenarios. In case the sub-problem is

infeasible, a constraint (5), called feasible cut, is then added to the master problem. The revised
master problem is then solved to generate a new value of x for each sub-problem.

Since 4 is the lower bound for the @(x), the value of & can be further improved until the following
condition is satisfied.

6= Epsﬂs (hs _Tsx) _ (6)
P=e)
Otherwise, the following optimal cut is then added to the master problem
6> 3 pm,(h ~T,x) (7)
0 ‘

The master problem is then re-solved.

Owing to the property of separable by scenario in the second stage. Decision maker needs only to
solve a series of small-scale linear optimizations. The expectation is then taken after the linear
optimizations. This property makes the L-shape method becomes efficient in computations.

ROBUST FORMULATION IN TWO-STAGE STOCHASTIC PROGRAM
Robust optimization (RO) can be considered as an integration of multi-objective programming and
stochastic programming. In the second stage, the recourse function is considering both the expected
value of recourse costs and the variability of these costs. '

A general model of RO in two-stage stochastic program can be formulated into similar decomposed
form as the following.
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[RO_Master]
Min cx+ (:)(x)
st Ax=b 8)
x20

The basic idea of robust optimization does not limit the choice for the recourse function ©(x). The

robust optimization can be considered as an aggregate objective concerning both “solution
robustness” and “model robustness”. The terminologies “solution robust” and “model robust” are
defined as the following.

Definitionl Solution Robustness: An optimal solution is solution robust with respect to optimality if
it remains “close” to optimal for any scenarios s € Q0.

Definition 2 Model Robustness: An optimal solution is model robust with respect to optimality if it
remains “almost” feasible for any scenarios s € Q.

Similar to literatures in financial optimization and risk management, one of common-used functions
for recourse function is in a mean-variance setting. The second-stage recourse function ©(x) can be

expressed in mean and variance of recourse costs. Define, z is a random variable of recourse cost.
We use g(E [z],Var[z]) for notation as the following.

g(E[lear[z]) = E(z)+ AVar(z) 9)
The coefficient A in the recourse function is a trade-off factor. The higher the value of A, the

decision maker emphases more on the variance term (i.e. solution robustness) than the expected term
(i.e. model robustness), and vice verse.

Further arrange, we have an equivalent function in the two-moment formulation.
g(E[z],Var[zI) = g(E[zlE[zzl) = E[z]+ AE[ZZ]— A(E[z])2 (10)
This recourse function §(E[zlE lzzb is however, not separable by scenarios. Specifically, the non-

separable is due to the existence of the term (E[z])2 . To solve the minimization of this recourse

function, we have to solve a large-scale quadratic program. The decision variables under all
scenarios have to be considered. All constraints in all scenarios have to be considered too. The

dimension for decision variable will become n;xnj xA xn5 . And number of constraints is

m)xm2 xA xmj . In this case, we can see we gain little to working decompose the problem than
working on its extensive form directly.

Iterative Parametric Separation Scheme.

To utilize the efficiency of L-shape, i.e. separating into a series of small-scale problem, we have to
look for a separation scheme so that the huge nonlinear optimization can be broken down. In this
sub-section, we consider in the space of first-stage decision variable (i.e for a given x). Since

g(E[z)E lzzb is a convex function of E [z] and E lzzJ. Define

_ag(E[z],Ez2 1
By == = 1-2AE(z) (11)

8§(E[zlLE|zz )
2 JE|z* (12)

Denote II, as the optimal solution set for all y minimizing the problem with objective function

g(Elz]E lzzb . We construct an auxiliary problem with objective function as the following

6 —275_—‘



¢, (E[LE2) = Elu(z)+ Al%)) (13)
The most prominent feature of the auxiliary problem is that the formulation is now separable by
scenario. We can separable the problem into a series of quadratic programs for each scenario. Denote
11, (,u)as the optimal solution set for all y minimizing the auxiliary problem for a particular 4 .

Theorem 1: The optimal solution set to the original problem IT,is a sub-set of optimal solution set
to the auxiliary problem I1,(A,)
Proof. Assume y €II, but y $H2(A1) . Then there exist a y such that

§(E(z),E(z.2))ly, < §(E(z),E(zz))y, butg, (v°)> ga (v) dc.

SRte RURHS

Since g, (E [z],E lzZDis a convex function of E [z] and E [zz J, the following property holds:

HAE] v

Combing A, = A , (14) and (15). This however, is contradicting the assumption of y” €11,

(14)

y

el el?) =g (EL)ER?)  +la a)]

Theorem 2: An optimal solution y to the auxiliary problem (i.e. y’ EHz(u)) is also optimal to the

recourse function in two-moment form (i.e. y €11,). A necessary condition is g~ =1-2AE [z]y. .

Proof: All value of recourse cost is parameterized by y ( z=qu,s=1,2,3,..,S ). While y is

parameterized by 4. In other words, we can express all z in terms of y as z(u). The original
problem is thus converted into the following abstract form.

Max £, (E[Go} E[ee) ) = £ 28 ) |- A el (16)
£l el )
e R A A
o2\’ ) o aE[(z(y‘ ))2] 7

(1—21E(z(y')))aE[z(“*)L(A)GE[(Z(H‘.))Z]

au ou

A first-order condition for optimal " is =0.1ie.

=0 (17)

On the other hand, for y €II,(u) , we have the following necessary condition from

g“(E[zlE[zzb = E{y(z)+ A(Zz)},
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=0 (18)
u u

Thus the vector [(1 - ZAi[z(y * )D

is proportional to [Z] . Since their second elements are both equal

to 4. We further have u” =1- ZAE[Z]

y

Combining the two theorems, we can solve the second-stage robust optimization (a non-separable
problem) via the well-constructed auxiliary problem. The remaining task is a one-dimension
searching for the mnewly introduced parameter x . The gradient for » , V, =

(1,—21E(Z(u)))aE£Z!E“)]+(A)8Ek;£u))2|

. We can then setup a gradient-based searching scheme

MODULAR DESIGN FOR SOLUTION SCHEME
The Figure 1 summaries our solution scheme architecture.

Figure 1: Design for Solving Robust Optimization in Two-stage Systems
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Risk attitude of parameter A is required to input by the decision maker. Cost coefficients, and
constraint coefficients are stored in a database. Scenario classification and values of probability for
each scenario may be obtained from historical data. Sometime it may need from expertise and beliefs
of decision makers. These inputs are then fed into the system via a user-input module and data-
retrieval module for robust optimization in two-stage setting.

A decomposition module is required to break down the problem into a mater problem and a sub-
problem (non-separable yet). A linear optimization module is used to solve the master problem to
generate a first-stage decision variable. A parametric separation module then separates the sub-
problem as we proposed in this paper. Each separated sub-problem is a quadratic programming. A
quadratic optimization module is then called for solving each problem. If the problem is infeasible, a
feasible cut insertion module is called to add to master problem. This looping ends until the sub-

problems are all feasible. A linear searching module will be used to search for optimal parameter .

The searching ends when the condition in theorem 2 is met. The solution then compares with the
lower bound in master problem. This looping will end up when optimality is reached, otherwise,
optimal cut insertion module will add cut to master problem.

CONCLUSIONS AND RECOMMENDATIONS
Robust optimization is an integration of multi-objective programming and stochastic programming.
Robust optimization considers not only the value recourse cost but also the variability of this cost.
However, a drawback to the formulation is the second-stage problem cannot by separated by
scenario. Traditional tool, like L-shape method, become handicapped for solving the problem.

In this paper, we developed a separation scheme for robust optimization. The non-separable part of
the model is embedding into a parameter, the second-stage problem is solved via a well-construct
auxiliary problem, which is separable. The efficiency of tradition L-shape method can then be
applied after implementation of the separation scheme. A basic solution scheme architecture is also
proposed with major modules are being highlighted.
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