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Markov renewal functions in the M/G/1 type queues
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1. Introduction

We consider Markov renewal equations and their
solutions arising in the stationary distribution of the
M/GI/1 type queue (e.g. see [3]). It is shown that
the transition kernels of these renewal equations can
be expressed by ladder epochs of a Markov additive
process that describes the system queue length when
the system is not empty. We also consider how vari-
ants of the Markov renewal function, e.g., the one
in Takine [5], arise. Usually, matrix analysis is used
for studying the M/G/1 type queue. Unlike this, we
mainly use stochastic arguments, which not only sim-

plify proofs but also reveal new aspects.

2. Ramaswami’s identity

Let S be a finite set. Let A(n) and B(n), n =
0,1,..., be S x S nonnegative matrices such that
Y 0A(n)e = e and Y. B(n)e = e, where e is
S-column vector all of whose entries are unit. Let
Z,=1{0,1,...} and S} = Z, xS. Define the §; xS}
transition probability matrix P as

B(0) B(1) B(2) B(3)
A0) A1) A(2) A®3)

P=| 0 A(0) AQ) A®)

The Markov chain with this P is referred to as the

M/G/1 type. Let z(n), n = 0,1,..., be nonnegative

S-row vectors. Then, z = {x(n);n > 0} is said to be

the stationary measure of P if x P = z, equivalently,
n+l

z(n) = z(0)B(0) + Y _ x()A(n+1—1),

=1

(2.1)

and, in particular, said to be the stationary distribu-
tion if }_° jx(n)e = 1.

We next introduce the Markov chain obtained
from P removing boundary states {0} x S and ex-
tending the state space from S; to Z x S, where
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Z = {0,%1,42,...}. Denote this Markov chain by
{(Yn,X»)}. From the structure of P, Y, is skip free
in the downward.

Let 7, = inf{f > 1;¥, = —n}. Since {V,} is
skip free, {X,.} is also a Markov chain.
the S x S transition matrix of this Markov chain
by G. Then, we have G = Y >, A(n)G™, which
is called the fundamental matriz. Let ®4(n) =
Y ren A(Q)G*™ and ®5(n) = Y2, B(£)G* ™. Ra-
maswami (4] shows that, if & = {z(n)} is the station-

Denote

ary distribution, then it satisfies, for n > 0,

n
z(n) = z(0)@s(n) + ) _z(O)®a(n+1-10), (2.2)
£=1
This equation is rearranged to
n—1

x(n) = [m(O)QB(n) +Y @(O®a(n+1- e)]
£=1

x(I-®4(1)7Y, n>1. (23)

We here give a new proof for (2.2) without using a
censored process as usual.

Lemma 2.1 If (2.2) holds, then {z(n)} is the sta-
tionary vector of P.

3. Markov renewal equation

Let ¥4(n) = ®4(n + 1), then (2.2) becomes
z(n) = 2(0)(2p(n) — a(n +1))

n
+> 2(O)Ta(n—0 n>0. (3.1)
=0

This is a Markov renewal equation if > ¥ 4(n)e <
eor Y  U7%(n)e < e. Unfortunately, this may not
be true. We convert this equation to the Markov re-

newal equation using a dual process, defined below.
Since {X,} is a Markov chain with transition rate

“matrix A = Y7 A(n), which is assumed to be ir-

reducible, X, has the unique stationary distribution,
denoted by S-row vector 7. Assume that X is sub-
ject to the distribution 7. Then, {X,;n > 0} is a sta-
tionary process, so we can extend this process on the



whole time axis. Since {Y,} is defined on the {X,},
we can extend it similarly. We then define the dual
process {(Yn,Xn)} by X, = X_, and ¥, = -Y_,..
It is easy to see that {X,} is the Markov chain with
transition rate matrix: A = Az'ATAgx, where Ag
is the diagonal matrix whose i-th entry is the i-th
component of a vector a. Clearly, {Y,} is a Markov
additive process with background process { X,}.
Define 7+ = inf,>;{n|¥, > 0}. That is, 7+ is the
weak ladder epoch of {¥,,}. The following result is a

key observation for our arguments.

Lemma 3.1 Under any drift condition, we have

P(Yie =€, X:s = j|Xo=14) = % [@a(£+1)],,.(3.2)

We now convert (3.1) to a Markov renewal equation.
Let (n) = Az'z(n)T, dc(n) = Axldc(n + 1) Ax
for C = A, B and ¥ 4(n) = & 4(n+1). Then, we have
the following result from (3.3) by taking transpose.
Theorem 3.1 If B4 =3 0

2(n) = ($a(n) -
+) Ta(n - 0)z(0),

€=0

1nA(n)e <1, then
®4(n+1))&(0)

n>0, (3.3)

is the Markov renewal equation, and has the solu-
tion {#(n)}. Furthermore, {z(n)} = {&(n)"Ax} is
the stationary measure of P, and the Markov renewal
kernel {¥4(n);n > 0} is proper only if 84 = 1, so
{z(n)} is a probability distribution only if 84 < 1.

Remark 3.1 A standard setting in the M/G/1 type
A(0) + A(1) and B(n) =
A(n+1) for n > 1. In this case, we have ®p(n) —
®a(n+1)= A(0)1(n = 0).

queue assumes that B(0) =

Denote the Markov renewal measure for the kernel
{Ta(n);n >0} by U(n) = T2, \flf:l)(n),where ma-
trix convolution A x B(n) is defined as [4 * B(n)];; =
o Tl A@Lk[B(n — Olis, and TGO (n) = I for
£ = 0. Hence, if 4 < 1, the stationary distribution
Zio ‘I’E: l)(n),

n>0. (34)

{z(n)} is obtained as, using U(n) =
z(n) = z(0)(®p — ¥a) * U)(n),
4. Alternative formulations

There are several variants of the renewal equations
and functions. In this section, we discuss how they

arise. Generally speaking, those variants come from
different choices of the Markov renewal kernel and the
initial term of the sequence {Z(n)}.

(Modifying the initial term) Let the sequence in
(8.3) starts with n = 1, then, forn > 1,

dp(n)&(0) + Y Ta(n— O)&(0).
=1

Thus, we have (n) = z(0)(¥p*U)(n—1) for n > 1,
where ¥ g(n) = ®g(n+1). Note that U(0) is not null
but U(0) = 3772, ¥54(0) = (1 — ®a(1))~".

(Modifying the Markov renewal kernel) We
next consider to use the Markov renewal kernel corre-

sponding with (2.3). Then, for n > 1,
= (I - &4(1))"'®5(n)Z(0)

n—-1
+ > (I - 84(1) ' Ta(n - 0)3(0), (42)
=1

#(n) = (4.1)

(n)

This is the renewal equation, which is equivalent
to the one that is obtained by Takine [5]. In this
case, the Markov renewal kernel is given by ['4(n) =
(I — ®4(1))"'¥4(n). This is a right kernel since
Lemma 3.1 implies 350 | ®4(n)e < e. Denote the
Markov renewal measure for the kernel {I'4(n)} by
V(n). Then, we have x(n) = z(0)(T'z * V)(n — 1) for
= ®p(n)(I - 2a(1))""

The advantage of this kernel is that it easily handles
the tail probabilities defined by Z(n) = Y ;2 z(¥).
Namely, we have T(n) = m(O)(I‘B*V)(n’ 1) forn > 1,
Yeen (o).

n > 1, where 'g(n)

where Tp(n) =
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