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1. Introduction

Software reliability models (SRMs) based on the non-
homogeneous Poisson process (NHPP) have been proposed
in recent three decades. The NHPP-based SRMs are usu-
ally tractable in practical use and are intuitively reason-
able. The most traditional SRMs are Goel and Okumoto
model [1] and Yamada and Osaki model [2].

This paper describes a parameter estimation algorithm
on the NHPP-based SRMs. Especially, we focus on the
expectation-maximization (EM) principle, and develop the

iteration algorithm to calculate the maximum likelihood
estimates on the NHPP-based SRMs. i

First, we introduce the NHPP-based SRMs and the un-
derlying mathematical modeling framework. Based on the
modeling framework, the EM algorithm for calculating the
maximum likelihood estimates can be developed as an it-
erative scheme. Next, we extensively apply the EM al-
gorithm to estimating the model parameters for additive

NHPP-based SRMs.

2. NHPP-Based SRMs

The NHPP-based SRMs are usually tractable in practi-
cal use and are intuitively reasonable. In this section, we
introduce the mathematical framework of the NHPP-based
SRMs, and develop the EM algorithm for estimating the
model parameters.

As the modeling frameworks of NHPP-based SRMs,
some approaches are known to construct them from the

stochastic behavior of software faults. Langberg and
Singpurwalla {3] propose a modeling framework based on
the generalized order statistics (GOSs). The GOS-based
modeling framework is made under the following assump-

tions:

Assumption A: Software failures caused by software
faults occur at independent and identically dis-
tributed (i.i.d.) random times.

Assumption B: The initial number of software faults is
finite.

Let F(t) and f(t) = dF(t)/dt denote the probability
distribution function for the software fault detection times

and its probability density function, respectively. If the
initial number of software faults is known as a constant

N (> 0), the probability mass function of the number of
faults detected before time ¢ is given by

e =y = () rrF @

where F(-) = 1 — F(-). Assuming that the initial number
of faults follows the Poisson distribution with parameter
w (> 0), we have the number of faults detected before time
t,

Pr{N(t) = k} = {“—F;C(f-)-}:eXp{-wF(t)}. 2)

Equation (2) is equivalent to the probability mass function
of the NHPP having the mean value function wF(t). In
this modeling framework, substituting typical probability
distributions into F(t) in Eq. (2) yields existing SRMs.

Let us consider the parameter estimation for the NHPP-
based SRMs. In particular, this paper focuses on the max-
imum likelihood estimation.

Let X1,X2,..., X~ and X; < X[g) < -+- < Xn) be
fault detection times and their order statistics, respec-
tively,  where N is the initial number of faults and is
the Poisson distributed random variable with parameter
w (> 0). If one can observe all the fault detection times
D = (z1,...,2Zn), which is the complete data, the loga-
rithmic likelihood function is given by

log L{w, 0| Do) :nlogw—w+210gf(zk;0). 3)
. . k=1
Under the complete data, the maximum likelihood esti-
mates are provided as follows.

w=n (4)

and

0 = argmax {Zlog f(zk;ﬂ)} : (5)
0 k=1

The EM algorithm is an iterative method for an estima-
tion problem with incomplete data. Given the observed
experiment, each step in the EM algorithm consists of cal-
culating the expected logarithmic likelihood function un-
der the incomplete data and of finding the estimates which
maximizing it. ‘

Given the fault detection time data at time ¢, D, =
(x1,...,Za), n < N, we can see that D, is the incomplete



data instead of the complete data Do,. The EM algorithm
is then developed as below [4]:

At the (n + 1)-st step, the estimates of the model param-
eters are calculated as

&) = BIN|D; 0,8 (6)
N

"ty = argmax {El:Zlogf(Xk;O) Dt;u";(n),()(n)] } ,
0 k=1
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where 8(™) is the estimated parameter set at the n-th step
in the EM algorithm and E[- ; 8] denotes the mathematical
expectation operator, provided that the probability density
f has the parameter set 6.

In Egs. (6) and (7), we use the following formula on the
expectation operator: For any measurable function h,

N
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= ) hlz) +o™ / ~ h(u)f(u; 0™ )du.  (8)
k=1 t

3. Additive NHPP-Based SRMs

The additive NHPP-based SRM consists of m software
components. The m components are independent from
each other. The software faults on the component 7 are
detected according to the NHPP with the mean value func-
tion, Ai(¢;0:), i = 1,...,m. Since each component is in-
dependent, the total number of detected faults is given by

m Ai t;01~ " dd
——’-#exxb{—zm(t;@i)}.
i=1

n!
9)
From Eq. (9), we can find that the additive NHPP-
based SRMs are comprised by the NHPP-based SRMs. In
particular, if the fault detection on each component can
be described by the GOS-based modeling framework, the
probability mass function for the total number of faults is

Pr{N(t) =n} =

given by

Pr{N(t)=n} = (wZZ';lpji(t;oi))

X exp {— (wipiﬂ(t;ei)) } ,(10)

where p; is the ratio of the software faults corresponding
to the component ¢ and F;i(-) denotes the fault detection
probability for an inherent software fault in the component
i.

Let us consider the parameter estimation problem. We
first define two data sets, fault detection time data and
their corresponding component data,

Dt = (1:1,‘..,1:“), Mt = (ml,...,m,,).

(11)

Then the logarithmic likelihood function is given by
lOg L(p’ B‘Dﬁ M‘)

= Zni logpi + Zlog (Z fizk; 0:)x{mx = i}) ,
i=1 k=1 1=1
(12)

where p = (p1,...,0m), @ = (01,...,0), x{} is the
indicator function and n: = .. _ x{mx = i}. Hence,
we have the following maximum likelihood estimates: For
i=1,...,m,

pi = nifn, (13)
6, = argmax {Z log fi(zx; 0:)x{mx = i}} -(14)
oi k=1

In fact, we may not observe the component data M;.
Thus, the EM algorithm can be applied to calculating the
maximum likelihood estimates as follows:

E-step:
E [Z R(Xi)x{Mx = 2} Dt;i)"“,é‘"’]
k=1
" P h(an) £ (@r:027) a5)
m  ~(n An)
k=1 Zi:l pf )fi(zk;oi )
M-step:
(n+1) B [ ::1 X{M’C = 1'}| Dt;i)(n)v é(n)]
Iii = 9 (16)
n
~(n+1) = .
6; = argmax{E[2:logfi(Xk;0i)x{M;C =1}
i k=1

IDt;ﬁ‘"’,é(")] } ar)

Combining Eqgs. (15)-(17) with Egs. (6)-(8), we develop
the EM algorithm for additive NHPP-based SRMs.

References
(1} A. Goel and K. Okumoto, Time-dependent error-
detection rate model for software reliability and other

performance measures, IEEE Trans. Reliab., R-28,
206-211, 1979.

[2] S. Yamada and S. Osaki, Software reliability growth
modeling: models and applications, IEEE Trans. Soft-
ware Eng., SE-11, 1431-1437, 1985.

[3] N. Langberg and N. D. Singpurwalla, Unification of
some software reliability models, SIAM J. Sci. Com-
put., 6, 781-790, 1985.

{4] H. Okamura, Y. Watanabe and T. Dohi, An estima-
tion of software reliability models based on EM al-
gorithm (in Japanese), Trans. of IEICE(A), J85-A,
442-450, 2002.





