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Proximity Theorems of Discrete Convex Functions
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In the area of discrete optimization, non-
linear optimization problems have been inves-
tigated as well as linear optimization prob-
lems. Submodular (set) functions and sepa-
rable convex functions are well-known exam-
ples of tractable nonlinear functions, in that
the submodular function minimization prob-
lem can be solved in polynomial time, and
separable convex functions have been treated
successfully in many different discrete opti-
mization problems.

Recently, certain classes of “discrete con-
vex functions” were proposed: integrally con-
vex functions of Favati and Tardella (1990)
and {L,M,L3,M;}-convex functions of Murota
(1996,1998). L-convex functions contain the
class of submodular set functions. M-convex
functions possess structures of matroids and
polymatroids. Separable discrete convex func-
tions can be characterized as functions with
both L-convexity and M-convexity (in their
variants). Lg-convex functions and M,-convex
functions constitute larger classes of discrete
convex functions that are relevant to the poly-
matroid intersection problem, where an L,-
convex function is, by definition, the infimal
convolution of two L-convex functions and
an M;-convex function is the sum of two M-
convex functions. The M,-convex function
minimization problem is equivalent to the M-
convex submodular flow problem which is an
extension of the submodular flow problem.
The class of integrally convex functions con-
tains all of the above classes.

Those classes C of discrete convex func-

Akihisa TAMURA

tions f possess the following features in com-

mon:

Discreteness: f is defined on an integral
lattice Z", i.e., f : Z" — R U {400}, where
Z and R denote the sets of integers and reals,
respectively.

Convex Extendibility: There exists a con-

tinuous convex function f such that f(z) =

f(z) for all z € Z™.

Optimality Criterion: There exists a neigh-
borhood N¢(z*) C Z™ with center z* such
that f(z*) < f(z) (Vz € Z") if and only if
f(z") < f(z) (Vz € Ne(z*)).

Optimality criterion says that global min-
imality is implied by local minimality defined
in terms of the neighborhood Ng(z*). This
is a significant feature inherited from contin-
uous convex functions.

Moreover, L-/M-convex functions have a

“proximity property” described as

Proximity Property: Given a positive in-
teger a and a point z* € Z", there exists a

function d¢(n, a) such that

f(z%) £ f(z) (V= € N&(z*)) =
dz* € argmin f : ||z* — 2%|e < do(n, @),

where
Ng(z%) = {z*+a(z—2%) | z € Ne(z)}

and arg min f denotes the set of all minimiz-

ers of f, ie.,

argmin f = {z€Z" | f(z)<f(y) (VyeZ™)}.



The proximity property says that a locally

minimal solution z* of a “scaled” function
fo(z) = f(z* + azx)

is close to a minimizer z* of f in terms of

(xeZ")

dc(n,a). For L-/M-convex functions,
do(n,a) = (n — 1)@ — 1)

is a valid choice ([2] and [3], respectively).
The proximity property can be exploited in
developing an efficient scaling algorithm for
minimizing f. In fact, the L-convex function
minimization can be solved in polynomial-
time by combining submodular set function
minimization algorithms and the proximity
property [1] (see [4]). For the M-convex func-
tion minimization, polynomial-time scaling al-
gorithms based on the proximity property and
its generalization are known [6, 7).

This talk addresses proximity properties
of Ly-/M;-convex functions (see [5] for de-

tails). Our main results say:

[L, proximity] for an essentially bounded
Ly-convex function f and a positive integer

a, if z* € dom f satisfies
f(z%) < f(=* + axs)

forall S C V, then there exists * € arg min f
such that

lle* — 2|0 < 2(n—1)(a—1),

[M; proximity] for an M,-convex function
f represented as the sum of two M-convex
functions f; and f3, and a positive ihteger a,
if % € dom f satisfies

k
Z(fl(xa_axua+ani) — fi(z*)) +
=1

k .
> (fae” —aXups Faxr) = fo(a%) 2 0

for any ordered subsets U={u,,...,ux} and
W={wy,...,w;} of V with UNW = § where
Uk41 = up, then there exists z* € argmin f

such that
2
le* = 2%len < 7-(a1).
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