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An exact quantization method for the design of
linear phase FIR filter using Semi-Infinite Linear
Programming

Rika Ito* Kenji Suyama* Ryuichi Hirabayashi*

1 Introduction

The purpose of the paper is to propose a new de-
sign method of FIR filters with discrete coefficients
considering optimality. The design methods of FIR
filters with discrete coefficients have been widely
researched[1]~[4]. However, the optimality of the
solution has not be assured because of the finite
constraints. In our proposed method, the design
problem of FIR filters is formulated as a Mixed
Integer Semi-Infinite Linear Programming problem
(MISILP), which can be solved by a branch and
bound technique. On each node of the branching
tree, it is necessary to solve Semi-Infinite Linear
Programming problem (SILP)[5]. Then it is possi-
ble to obtain the optimal discrete coefficients, and
the optimality of the obtained solution can be guar-
anteed. It was confirmed that optimal coefficients
of linear phase FIR filter with discrete coefficients
could be designed in reasonable computational time
with sufficient precision based on the results of com-
putational experiments.

2 Problem Formulation

The transfer function of an FIR filter with length
N +1 is denoted as

N
H(z) = thz—k.
k=0

When hg, kK = 0,1,..., N is the even symmet-
ric impulse response and, N is an even number,
the linear phase characteristic with N/2 delay is
achieved. Then, the magnitude response H(w) can
be expressed as

(1)

N

Hw) = Zan CosNw.

n=0

(2)

Suppose, a desired response D{(w) is given as fol-

lows K, 0<w< wp,

Where K is a scaling factor, wp is the passband
cutoff frequency, and w, is the stopband cutoff fre-
quency, respectively. Then, the optimization prob-
lem to approximate H(w) to D(w) in a min-max
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sense can be written as
min  max |D(w)— H(w)|.

ag,--- an wEN

(4)

Q = [0,wp] U [ws, 7].

If we introduce a new variable §’ that corresponds
to the L.-approximation error, and assume that
coefficients a, (i = 0...N) are limited to discrete
coefficients of p bit, it is easy to convert the above
min-max problem into the MISILP as follows.

min 0
sub.to Hw)+d >2°D(w),w € Q,
~HWw)4+6 >-2PD(w),w €N )
To,...,aN > —2P,
—Zo,...,—ZN = —(2P —1),
z€Z, i=0,...,N,
where, -
Aw) = 2PHW) (6)
N
= ZQ”an €os W (7)
n=0
N
= Zzn cos nw, (8)
n=0
z; = 2Pa;, i=0,...,N, 9)
5 = 274 (10)

3 A New Design Method using Semi-
Infinite Linear Programming

Our aim is to solve MISILP(5), but it is impossible
to solve it directly. Hence, we solve SILP ignoring
the integer constraints. However, since SILP is a
continuous optimization problem, an optimal solu-
tion obtained is not always an integer solution. A
standard technique for solving this difficulty is to
exploit the B & B technique.

If there are some Z;’s that are not integers, then
select one non-integer variable z; and generate two
subproblems, which one has an additional con-
straint —z; > —|Z;]| and the other has an addi-
tional constraints z; > [Z;]. Notice here, that the
two generated subproblems are also SILP and can
be solved by Three Phase method. We can continue
this procedure and call this process as branching
process.
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If we continue the branching process, then after
finite iterations, we can obtain an integer solution.
The obtained integer solution is an optimal solution
for the subproblem and a feasible solution for MIS-
ILP (5), but might not be optimal for MISILP(5).
However, we can use the objective function value
that corresponds to the integer solution as an upper
bound for MISILP (incumbent value) since we can
fathom subproblems that have the optimal value
greater than or equal to the upper bound. This
is true, because, if we add some additional con-
straints, the optimal value of the subproblem be-
comes always bigger. The process that we fathom
all subproblems which have greater optimal value
than the incumbent value is called the bounding
process.

4 Computational Experiments

We executed some computational experiments to
certify the performance of the proposed filter design
method. We set w, = 2/57, ws = 4/77. Two kinds
of computational experiments were performed.

(a)The scaling factor is fixed to K = 1. The bit
length p was set from 3 to 10 with pitch 1, and the
filter order was fixed to N = 3,4,...,20 for each
value of p.

(b)We fixed p = 6,7,8 and N = 9,10,11,12.
Then, the scaling factor K was changed from 0.5
to 2.0 with pitch 0.1.

The result of experiment (a) for N = 12, p =
3,...,10 is shown in figure 1. It was shown that the
optimal value decreased slowly for p over 7bit, on
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Figure 3: Magnitude response for (A) p = 4,N =
12, K =1 and (B) with coefficients rounded to p =
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