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On Optimal Service Capacity Allocations for Fork-Join Open
Queueing Networks via Second Order Cone Programming
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1. Introduction

For queueing network systems, we consider a problem
which finds an optimal service capacity allocation to
the servers so as to maximize the throughput of the
system.

For a serial queueing network system in which
servers are connected in series, some studies have
been devoted to solving optimal mean service time
allocation problems|l, 3|. For general queueing net-
work systems, however, such kind of studies have not
been reported.

A natural interpretation of the mean service time
allocation for serial queueing system is a decomposi-
tion of a job into a series of “pipelined processors.”
This study assumes a different situation; we consider
fork-join type queueing network systems, and formu-
late an optimal service capacity allocation problem.
Our problem can be interpreted as an optimal server
performance allocation for the servers each of which
has to process a certain amount of jobs.

We apply the idea of “sample-path optimization”
to the throughput maximization problem, and show
the (approximate) optimization problem can be for-
mulated as a second order cone programming prob-
lem (SOCP) which can be solved effectively by the
interior point methods.

2. Model

We consider an M sever synchronized fork-join open
queueing network system. Let us define
S : Set of all servers (= {1,2,---, M});
I C S : Set of input servers to which jobs enter;
O C S : Set of output servers from which jobs
leave the system;
P; : Set of the preceding (upstream) servers
of server 1,
Q; : Set of the succeeding (downstream)
servers of server 1
Si,; + Service time of j-th job at server ¢;
D, ; : Completion time of j-th departure at
server 1,
We impose the following assumption on topology of
the network under consideration.
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(A1) Network is connected without any closed loop,
INO = 0, input servers accept jobs only from the
outside of the system, and that all jobs from output
servers leave the system.
Here are our basic assumptions.
(A2)
o There are infinitely many jobs waiting in front
of each input servers so that the input servers
are never starved,;

e At server ¢, completed job can leave the server
if at least one buffer space is available at each
downstream server q € Q;, 1 € S\ O;

e The service at server i can be started only if
there is a set of jobs from P, in its buffer and
the server is empty, i € S\ I;

e After completion of a service at server ¢, the
next service at the server can be started after
all departures to the downstream servers in Q;
are completed, i € S\ O;

e At each output server i € O, the departures
of completed jobs are never blocked.

3. Formulation

We suppose that, at server i, the service times
Sij,j =1,2--- are i.i.d. with mean 1/u;, and that
we can control values of these means. Let TH;(u)
be the throughput from server i¢. Given total ser-
vice capacity C, our problem then is to find an op-
timal allocation g = (u1---uar)? which maximizes
the throughput TH, for arbitrarily chosen r € S:

max TH,(p)
u

M
P(C) subj. to Zﬂi <C
i=1

p>0

However, since it is difficult to obtain exact values of
TH,(u), adopting idea of the so-called “sample-path
optimization[2]”, we approximate them by a simu-
lation run under fixed sample (random numbers) as



follows. Let w be a sample (a series of random num-
bers) in a sample space, and a method for generat-
ing a sample-path (realized values) S;;(1/u;) with
any fixed mean value 1/p; of S;; from w be given.
Then, with the sample w being fixed, departure times

D; j(p) under service capacity allocation p can be
calculated by

We thus can approximate TH;(p) by the value
TH, n(p) = N/D, n(p) for large N, and obtain the
following approximate optimization problem.

max ==
¢ Drn(0)
Px(C) M1
N subj. to Zg_ <C
i=1 ¢
6>0

where 0 = (61 ---0p)T = (1/p1---1/un)T. We as-
sume that
(A3) Eiyj (91) = gi,j(l/ﬂi) is linear in 01

Under this assumption the objective function of
Pyn(C) is a concave function, and hence, the opti-

mal solution of Py(C) converges to a true optimal
solution of P(C)[2].

4. Conversion to SOCP

Let us define a network A(8) consisting of (M N +1)
nodes {(0)}U{(i,5) | s = 1,2,---, N,i € S} such that
node (3, j) corresponds to departure time D; ;(0) and
the weights of arcs are given as follows:

Arc Weight
(O) — (i, 1), el :S:,‘,l(gi)
(i»j - 1) - (ivj)’ 1e s Si,j(ei)

(q,j—Bq)*—*(i,j), qulviES 0
where (0) is a dummy node. Then, it is clear that
D, n(6) coincides with the length of the longest path
from node (0) to node (¢, N). Thus, defining

Pi,n = Set of paths from (0) to (i, N) in N(6)
di(P,0) = Length of P € P; i

we can rewrite problem Py (C) as:

min o
0,0

subj. to d.(P,0) —oc <0VP e P, n
600

where ©(C) = {6 | "M, 1/6, < C, 8 > 0}. It should

be noted that the first constraint condition consists

of many linear inequalities. Second constraint can be
converted into a set of second order cone constraints
as follows. Introducing new variables n; and &, =

(€i0 &i1 &i2) T, we have
0 c0(C)
Z:‘il i S C7
7 — 0;
< Ei € K(3)7 6720 = s 5,'1 = ———
&2=1,6,>0,17>0 VieS

n; + 6;

where K (3) is the 3-dimensional second order cone.
We thus have shown that the problem Py (C) is
equivalent to the following second order cone pro-
gramming problem (SOCP).

((min o

0,0,¢

subj. to
d.(P,0) —0c <OVP € PN
Z?-/l——l m<C .
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For a fixed path P € P, v, d.(P,8) is a linear func-
tion in @, and hence, SOCPy(C) is an SOCP with
a huge number of linear constraints. Since it is hard
to deal with all of these constraints simultaneously,
we take an approach of “relaxation method”, and the
sub-problems (relaxed problems) can be solved by in-
terior point methods[4] effectively.

SOCPN(C)

5. Conclusion

Concrete examples with Coxian service time distri-
butions and numerical results will be shown at the
presentation.
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