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1 Introduction

In this paper, we consider multi-object auctions
in which each bidder has a positive reserva-
tion value for only one special subset of ob-
jects, called a necessary bundle. We show
that this auction leads to an efficient alloca-
tion through Nash equilibria under complete in-
formation when the bid-grid size is sufficiently
small. We apply our results to spectrum auc-
tions satisfying the conditions that necessary
bundles are intervals of discretized spectrum.
We show that the revenue maximization prob-
lem for the seller can be solved in polynomial
time for the above auctions. The algorithm also
indicates a method to choose an accepted bid-
der randomly when the revenue maximization
problem has multiple optimal solutions. Lastly,
we introduce a linear inequality system which
characterizes the set of Nash equilibria.

2 The Model

Let N = {1,2,...,n} be the set of bidders, and
M = {1,2,...,m} the set of objects. We as-
sume that each bidder has a positive reserva-
tion value only for one special subset of objects,
called the necessary bundle. If the bidder misses
any object in the bundle, other objects in the
bundle are not valuable to the bidder at all. We
also assume that the objects in the bundle are
also sufficient to the bidder, so the bidder has no
value for any object out of the necessary bundle.
We denote the necessary bundle of the bidder ¢
by T; and its value for T; by v; > 0. The reser-
vation value V;(S) for any S C M is defined
by

(otherwise).

Throughout this paper, we assume that v; €
{6,20,34,...} for any i € N.

Next, we propose the sealed bid simultaneous
auctions with necessary bundles. At the begin-
ning of the auction, each bidder ¢ € N submits
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a bid (B;, b;) where B; is a bundle and the non-
negative real number b; is the amount it is will-
ing to pay for the bundle B;. We assume that
each bid a multiple of ¢ = %. for some integer 1.
The set of integer multiples of the bid unit is de-
noted by Z.. In the following, we write a profile
of bids ((B1, b1), (B2, b2), ..., (Bn, bn)) as (B, b)
by changing the order of components where
B = (Bl,BQ,...,Bn) and b = (bl,bz,...,bn).

The seller solves the following integer pro-
gramming problem, called the Bundle Assign-
ment Problem (BAP), which maximizes the rev-
enue:

BAP(B,b):
maximize Z biri=b-x
tEN
subject to Z z; <1 (V5 € M),
1:B;3j
z; € {0,1} (Vi € N),
where £ = (z1,z2,...,2,). We denote the

set of all the optimal solutions of BAP(B,b)
by Q(B,b). The seller solves the problem
BAP(B,b) and obtains an optimal solution z*.
If the problem BAP(B, b) has multiple optimal
solutions, the seller chooses an optimal solution
x* € Q(B,b) at random. Hence, for the given
profile (B, b), the expected utility of the bidder
1 U;j(B,b) is defined as follows:

U;(B,b) &
Vi(Bi) —b; (i € P(B,b)),
iy T €QUB,Y) |z =1}
(i € Q(B, b)),
0 (i € R(B, b)),
where
P(B,b) L {ieN|zi=1, VzeQB,b)},
R(B,b) ¥ {ieN|z;i=0, Vz € QB,b)},
Q(B,b) ¥ N\ (P(B,b) UR(B,b)).



Papers [1] discuss some algorithms for solving
the problem BAP(B, b).

3 Pure Strategy Nash Equilib-
ria

In this section, we discuss the existence of pure
strategy Nash equilibria. We say that a pro-
file (B*,b*) is a Nash equilibrium when (B*, b*)
satisfies the conditions that for each bidder i €
N, Ui(B*a b*) > Ui((Bia B*—i)’ (bia biz)) for any
bid (B;, b;) where B; C M and b; € Z,.

Let us consider the following set:

F.(B,v) < {be zZN|b; = v; (Vi € R(B,v)
UQ(B,v)),b; <wv; — 2" (Vi € P(B,v)),

B, b) =B, v)}

which is a subset of bid price vectors satisfy-
ing that the set of optimal solutions does not
change. Given a subset of bid price vectors
X C ZN, a vector b € X is called a minimal
vector in X if and only if for any b’ € ZV, the
condition [b' < b and b’ # b] implies b’ & X.

Theorem 1 If F.(T,v) is non-empty, then for
any minimal vector b* in F (T,v), (T,b*) is a
Nash equilibrium.

The following theorem shows the non-emptiness
of Fe(T,v).

Theorem 2 If ¢ is a suffictently small positive
number, F.(T,v) is non-empty.

4 Spectrum Auctions

In this section, we consider a spectrum auction.
An auctioneer wants to sell licenses for radio
spectrum M = {1,2,---,m}. Each spectrum
j(> 2) is adjacent to j — 1 on the right. We
consider the case of the preferences in which
each bidder ¢ requires any spectrum j satisfy-
ing ¢; < j < h; but no spectrum outside of it.
This setting is applied to our model, auctions
with necessary bundles, where agent ¢’s neces-
sary bundle is an interval T; = {j € M | ¢; <
J < hi}

Bundle
Longest

Problem and
Problem In the

Assignment
Path

spectrum auctions, we denote BAP by
max{b-x | Az < 1, = € {0,1}}. Then the co-
efficient matrix A € RM*¥ belongs to the class
of consecutive one matrices. It is well-known
that the consecutive one matrices are totally
unimodular. And so, the linear relaxation prob-
lem of BAP, max{b-xz | Az <1, 0 <z < 1},
has a 0-1 valued optimal extreme point solution
for any vector b. Thus, when we solve the above
linear programming problem by polynomial
time method, we can assert the following
proposition.

Proposition 1 In the spectrum auctions, the
related bundle assignment problem (BAP) is
polynomially solvable.

Moreover, we can show that the above prob-
lem is essentially equivalent to the longest path
problem and we can solve the problem by
CPM (critical path method) for PERT (Pro-
gram Evaluation and Review Technique). The
critical path method, which is equivalent to the
ordinary dynamic programming technique, finds
a longest path from 0 to m in G in O(n + m)
time.

Random Selection from Multiple Opti-
mal Solutions When BAP has multiple op-
timal solutions, the seller needs to choose an
optimal solution at random. In general, it is
hard to enumerate all optimal solutions, but by
using the equivalence between the longest path
problems and spectrum auctions, we can obtain
the following proposition.

Proposition 2 When BAP has multiple opti-
mal solutions in a spectrum auction, an optimal
solution can be randomly choosed by a polyno-
mial time method.
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