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1. Introduction

In most models of Data Envelopment Analysis
(DEA), the best performers have efficiency score
unity, and, from experience, we know that usu-
ally there are plural Decision Making Units (DMU)
which have this “efficient status.” To discriminate
between these efficient DMUs is an interesting re-
search subject. Several authors have proposed
methods for ranking the best performers. We will
call this problem the “super-efficiency problem.”

In this paper, we discuss the “super-efficiency”
issues based on the slack-based measure of efficiency
(SBM).
2. Slacks-based Measure of Efficiency

We will deal with n DMUs (Decision Making
Units) with the input and output matrices X =
(zi;) € R™*™ and Y = (y;;) € R°*™, respectively.
We assume that the data set is positive, i.e. X >0
and Y >O0.

We consider an expression for describing a certain

DMU (z,,y,) as

z, = XA+s
y, = YA-st,

1)
(2)

with A >0, s~ >0and st >0. We have:

T, > S .

(3)
Using s~ and s, we define an index p as follows:
p= 1= 218 [Tio
1+ %Z::l sz—/yio

In an effort to estimate the efficiency of (z,, y,), we
formulate the following fractional program [SBM] in
A, s~ and st.

(4)

1_ %Ezl Si—/xiol

[SBM] min p = " %Z:zl ™ {5)
subject to ¢, = XA +s~
y, = YA-s"
A > 0,s >0, 8">0.
Let an optimal solution for [SBM] be
(p* A", s7*,8T%).

Definition 1 (SBM-efficient)
A DMU (x,,y,) is SBM-efficient, if p* = 1.

3. Super-efficiency evaluated by SBM

In this section, we discuss the super-efficiency is-
sues under the assumption that the DMU (z,,y,)
is SBM-efficient, i.e. p* = 1. Let us define a produc-
tion possibility set P\ (x,,y,) spanned by (X,Y)
excluding (z,,y,). Further, we define a subset
P\ (xo’yo) Of P\ (mmyo) as

P\(@0,y,) = P\(Z0,,) [ ]{Z > @o and y < y,} .

_ﬁ (6)
By the assumption X > 0and Y > 0, P\ (x,,y,)
is not empty.

As a weighted [; distance from (z,,y,) and
(z,9) € P\ (0,Y,), we employ the index & as
defined by

5= 7 Laiz1 B4/ Tio
% Z::l gr/yro
From (6), this distance is not less than 1 and attains
1 if and only if (o, y,) € P\ (%0, ¥,), i.e. exclusion
of the DMU (x,,y,) has no effect on the original
production possibility set P.

We can interpret this index as follows. The
numerator is a weighted l; distance from z, to
Z(> x,), and hence it expresses an average expan-
sion rate of , to & of the point (Z, %) € P\(zo, y,)-
The denominator is a weighted [; distance from y,
to (< y,), and hence it is an average reduction
rate of y, to ¥ of (Z,7) € P\ (z,,y,). The smaller
the denominator is, the farther y, is positioned to
y. Its inverse can be interpreted as an index of the
distance from y, to y. Therefore, J is a product of
two indices: one, the distance in the input space,
and the other, that in the output space. Both in-
dices are dimensionless.

Based on the above observations, we define the
super-efficiency of (x,,¥,) as the optimal objective
function value §* of the following program:

% lel T/ Tio 8
% 2::1 gr/yro

532 i )\j:cj

i=1,#0

(7

[SuperSBM]

0* =mind =

subject to



n
y< Z )‘jyj

j=1,#o0
T>xz,andy < Yo
>0, A>0.

We have the following two-propositions.

Proposition 1 The super-efficiency score 0* is
units tnvariant, i.e. it is independent of the units
in which the inputs and outputs are measured pro-
vided these units are the same for every DMU.

Proposition 2 Let (az,,ly,) with a < 1 and
G > 1 be a DMU with reduced inputs and enlarged
outputs than (x,,y,). Then, the super-efficiency
score of (ax,, BY,) is not less than that of (x,,y,).

4. Input-Oriented Super-efficiency

In order to adapt our super-efficiency model to
input orientation, we can modify the preceding pro-
gram as follows.

For input orientation, we deal with the weighted
l1-distance only in the input space, keeping the out-
puts status quo. Thus, the program turns out to be:

‘ ¢ mind= 25z,
[SuperSBM(I)] 0" =mind = p ;x,/xw(g)

subject to x>

y < )\jyj

Jj=Y,#0
T>z,and Y=y,
A>0

The following proposition holds for this program:

Proposition 3 If inputs x, decrease to x,—Ax (>
0, Az > 0), then the optimal objective function
value §7(Ax) corresponding to this change satisfies

53 (Ax) > 8. (10)

Furthermore, the equality holds if and only if Az; =
0 or Z; = z;, — Az; holds for everyi (=1,...,m),
where T} is an optimal solution of the above pro-
gram (9).

5. The Andersen and Petersen Model
Andersen and Petersen (1993) proposed the fol-
lowing super-efficiency model:

[SuperCCR| 0" = mind (11)
subject to Oz, = Z AT+ 8~
j=11?£0

n

yo = Z AJy] - S+
j=1,#o

A>0,s >0, s">0.

Let an optimal solution of [SuperCCR] be
(6*,X",57*,s%*). For an efficient DMU (,,y,),
6* is not less than unity, and this value indicates
“super-efficiency.” Regarding this measure we have
the following proposition:

Proposition 4 The [SuperCCR] model returns the
same super-efficiency score 6% for any DMUs rep-
resented by (x, — as™*/6*, y,) for the range 0 <
a<l.

This contradicts our common understanding that a
reduction of input values usually increases super-
efficiency. This irrationality is caused by the fact
that this model deals only with the radial measure
and neglects the existence of input slacks as repre-
sented by s7*

Furthermore, we have the following relationships
between [SuperCCR|] and [SuperSBM(I)].

Lemma 1 Let us define
o = m‘in{(a—_—_{l&—‘)] s> O} (12)
i s;
= 0 i s7*=0.

Then, (z = 6"z, — a*s™*,y = yo,x =X)isa
feasible solution for [SuperSBM(I)].

Let an optimal solution of [SuperCCR] be
(6*,2",s7*,8%), the optimal objective value of
[SuperSBM(I)] be 67, and o as defined by (12).
Then we have:

Theorem 1

-

« m

6*<9x__(_x_§ :si

r= m < Zio
i=1

(13)
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