A binary search algorithm for the generalized maximum balanced flow problem

01403552 福島大学行政社会学部 同大学院地域政策科学研究科 中山 明 *NAKAYAMA Akira. 蘓 乾斐 SU Chien Fei

Abstract

We consider the generalized maximum balanced flow problem (GMBF), i.e., the problem of finding a generalized maximum flow in a network such that each arc-flow value is bounded by a given fixed proportion of the total flow value of a generalized flow, and propose a polynomial algorithm for this problem. Problem (GMBF) can be regarded as a generalization of the maximum balanced flow problem (MBF) for which several efficient algorithms have been proposed by Minoux and Zimmermann, etc.

1. Problem (GMBF)

Let G=(V,A) be a directed graph with vertex set V and arc set A, where $n \equiv |V|$ and $m \equiv |A| \geq 2$. $s \in V$ (resp. $t \in V$) is given source (resp. sink). $\partial^+ a$ (resp. $\partial^- a$) $(a \in A)$ is tail (resp. head) of $a \in A$. $\delta^{\pm} v \equiv \{a \in A: \partial^{\pm} a = v\}$ for $v \in V$. Let u(a) be an integral capacity of $a \in A$. For each $a \in A$, $\gamma(a)$ is a rational gain and $\alpha(a)$ is a rational balancing rate, where each of them is expressed as a ratio of two integers $\frac{\gamma_0(a)}{\gamma_1(a)}$ or $\frac{\alpha_0(a)}{\alpha_1(a)}$. Given a network $N=(G,u,\gamma,\alpha,\beta,s,t)$, problem (GMBF) is defined as follws:

(GMBF): Maximize
$$\operatorname{val}_{N}(f)$$
 s.t.
 $\partial_{\gamma} f(v) = 0, \ (v \in V - \{s, t\}),$ (2.1)
 $0 \le f(a) \le u(a), \ (a \in A),$ (2.2)
 $f(a) \le \alpha(a) \operatorname{val}_{N}(f) + \beta(a), \ (a \in A),$ (2.3)

where integers $\beta(a)$ $(a \in A)$ are given, and $\operatorname{val}_N(f) = \sum_{a \in \delta^-(t)} \gamma(a) f(a)$ and $\partial_\gamma f(v) \equiv \sum_{a \in \delta^+(v)} f(a) - \sum_{a \in \delta^-(v)} \gamma(a) f(a)$. Given a network $N' = (G, u, \gamma, s, t)$, problem (GMF) is:

(GMF): Maximize $\operatorname{val}_{N'}(f)$ s.t. $(2.1) \sim (2.2)$.

Given a network N_z , i.e., N with a parameter $z \ge 0$, consider problem (GMF(z)), where f in (2.1) and the inequalities in (2.2) should be replaced by f_z and

$$0 \le f_z(a) \le u_z(a), (a \in A),$$
 (2.4)

where $u_z(a) = \min\{u(a), \alpha(a)z + \beta(a)\}$. A flow f of N is a function $f: A \to \mathbf{R}_+$ satisfying (2.1) \sim (2.3), where \mathbf{R}_+ is the set of nonnegative reals. A flow f_z of N_z is a function $f_z: A \to \mathbf{R}_+$ satisfying (2.1) and (2.4). The value of a flow f of N is $\operatorname{val}_N(f)$. An optimal flow f of N (resp. f_z of N_z) is a flow f of N (resp. f_z of N_z) maximizing the value of f (resp. f_z). For a flow f_z of f_z , define f_z is f_z and f_z is f_z .

$$u_z^{f_z}(a) = \begin{cases} u_z(a) - f_z(a) & (a \in A^+(f_z)), \\ \gamma(\bar{a}) f_z(\bar{a}) & (a \in A^-(f_z)), \end{cases}$$
$$\gamma^{f_z}(a) = \begin{cases} \gamma(a) & (a \in A^+(f_z)), \\ 1/\gamma(\bar{a}) & (a \in A^-(f_z)), \end{cases}$$

where $A^{+}(f_z) = \{a \in A : f_z(a) < u_z(a)\},\ A^{-}(f_z) = \{a \equiv (j,i) : \bar{a} \equiv (i,j) \in A, f_z(\bar{a}) > 0\}.$ A residual network w.r.t. a flow f_z of N_z is defined as $N_z(f_z) = (G(f_z) = (V, A(f_z)), u_z^{f_z}, \gamma^{f_z}, s, t).$ The dual (DGMF(z)) for (GMF(z)) is

(DGMF(z)): Minimize
$$\sum_{a \in A} u_z(a)\theta_z(a)$$
 s.t. $\bar{\gamma}^{\pi_z}(a) + \theta_z(a) \geq 0, (a \in A),$ $\theta_z(a) \geq 0, (a \in A),$ $\pi_z(v)$: a real, $(v \in V)$,

where $\pi_z(s) = 0$, $\pi_z(t) = 1$, and $\bar{\gamma}^{\pi_z}(a) = \pi_z(\partial^+ a) - \gamma(a)\pi_z(\partial^- a)$. Define $\theta_z(a) \equiv \max\{0, -\bar{\gamma}^{\pi_z}(a)\}$. Complementary slackness conditions imply that if $f_z(a) > 0$ (resp. $f_z(a) < u_z(a)$) for each $a \in A$, then $\bar{\gamma}^{\pi_z}(a) + \theta_z(a) = 0$ (resp. $\theta_z(a) = 0$). Define $A_z \equiv \{a \in A : u(a) > \alpha(a)z + \beta(a)\}$, $C(\theta_z) \equiv \sum_{a \in A_z} \alpha(a)\theta_z(a)$, and $D(\theta_z) \equiv \sum_{a \in A_z} \beta(a)\theta_z(a) + \sum_{a \in A - A_z} u(a)\theta_z(a)$. The optimal value of (DGMF(z)) is expressed as $\operatorname{val}_{N_z}(f_z^*) = C(\theta_z^*)z + D(\theta_z^*)$, where f_z^* is optimal in N_z and θ_z^* is optimal for (DGMF(z)).

Proposition 1

For an optimal flow f_z^* of N_z , a function $F(z) = \operatorname{val}_{N_z}(f_z^*)$ is nondecreasing, continuous, piecewise

linear, and concave.

Proposition 2

The value
$$z^*$$
 of an optimal flow in N is
$$z^* = \begin{cases} \max\{z : z = \frac{D(\theta_z^*)}{1 - C(\theta_z^*)}\}, & (D(\theta_z^*) \neq 1), \\ \max\{z : z = \operatorname{val}_{N_z}(f_z^*)\}, & (D(\theta_z^*) = 1), \end{cases}$$
 where θ_z^* is a dual optimal solution.

Let P_v be a directed path from $v \in V$ to t in N'. The gain of P_v w.r.t. γ is $\gamma(P_v) \equiv \Pi_{a \in P_v} \gamma(a)$. The highest gain path from v to t is $\max \gamma(P_v)$. A labeling function w.r.t. N' is a function $\mu: V \to \mathbf{R}_{++} \cup \{\infty\}$ such that $\mu(t) = 1$ where $\mathbf{R}_{++} \equiv \{r \in \mathbf{R}_+ : r > 0\}$. The relabeled gain of $a \in A$ w.r.t. γ and μ is defined by $\gamma_{\mu}(a) = \gamma(a)\mu(\partial^+ a)/\mu(\partial^- a)$. The canonical label of $v \in V$ in N' is the inverse of the highest gain path from v to t. If no such path exists, its label is ∞ .

Theorem 3[Wayne,1999]

A flow g of N' is maximum if and only if there exists a labeling function μ such that:

$$\gamma_{\mu}(a) \leq 1, \quad (a \in N'(g)),
\mu(v) = \infty, \quad (v \notin T'),$$

where N'(g) is the residual network w.r.t. g, and T' is the set of vertices reachable to t by using arcs in N'(g).

2. Binary Search Algorithm

Input: $N = (G, u, \gamma, \alpha, \beta, s, t)$ Output: an optimal flow if it exists Step 1: Initialization Set $U \leftarrow mB^2$, where $B \equiv$ $\max_{a \in A} \{ \gamma_0(a), \gamma_1(a), \alpha_1(a), u(a), |\beta(a)| \}.$ If $\operatorname{val}_{N_U}(f_U) \geq U$, then stop. Set $L \leftarrow \max\{0, \max_{a \in A} \frac{-\beta(a)}{\alpha(a)}\}.$ If $\operatorname{val}_{N_L}(f_L) \geq L$, then go to step 3 else if $C(\theta_L^*) \leq 1$, then stop. Step 2: Decision of a lower bound Set $z_a \leftarrow \frac{u(a) - \beta(a)}{\alpha(a)}$ for each $a \in A$. Choose a maximal set $\{z_{a_i}: z_{a_i} > L, z_{a_i} < z_{a_{i+1}} (1 \le i \le m' - 1)\}$ for some $m' \leq m$. Set $z_{a_{m'+1}} = U$, $z_{a_0} \leftarrow L$, and $i \leftarrow 0$. repeat Set $i \leftarrow i + 1$. If $\operatorname{val}_{N_{z_{a_i}}}(f_{z_{a_i}}) \geq z_{a_i}$, then set $L \leftarrow z_{a_i}$

and go to step 3. If $C(\theta_{z_{a_{i-1}}}^*) \neq C(\theta_{z_{a_i}}^*)$, then $z' \leftarrow \tfrac{D(\theta^*_{z_{a_i}}) - D(\theta^*_{z_{a_{i-1}}})}{C(\theta^*_{z_{a_{i-1}}}) - C(\theta^*_{z_{a_i}})}.$ If $\operatorname{val}_{N_{z'}}(f_{z'}) \geq z'$, then set $L \leftarrow z'$ and go to step 3 else if $C(\theta_{z_{a_i}}^*) \leq 1$, then stop. until i = m' + 1. If i = m' + 1, then stop. Step 3: Binary search repeat Set $z \leftarrow \frac{L+U}{2}$. Stop if $\operatorname{val}_{N_z}(f_z) = z$ and $C(\theta^*_z) < 1$. If $\operatorname{val}_N(f_z) \geq z$, then set $L \leftarrow z$ else set $U \leftarrow z$. until $U - L < \frac{1}{B^{5m}}$. Step 4: Decision of an optimal flow Set $z^* \leftarrow \frac{\nu(v_U)}{1 - C(\theta_U^*)}$. Find an optimal flow f_{z^*} of N_{z^*} and stop.

Proposition 4

For any z, $D(\theta_z)$ (resp. $C(\theta_z)$) is an integral multiple of Γ_1^{-1} (resp. $(\Gamma_1\Gamma_2)^{-1}$) where $\Gamma_1 \equiv \Pi_{a \in A}(\gamma_0(a)\gamma_1(a))$ and $\Gamma_2 \equiv \Pi_{a \in A}\alpha_1(a)$.

Proposition 5

Let $[L_i, U_i]$ be the interval after ith repetition of Step 3. There exists an optimal value z'' such that $L_i \leq z'' < U_i$ and $C(\theta_{z''}^*) < 1$ if the algorithm is continuing.

Proposition 6

Let [L, U] be the interval at the beginning of step 4. There is a cornerpoint (z', F(z')) with $z' \in [L, U]$, where a cornerpoint is a point (z', F(z')) such that F(z) is not differential at z = z'.

Theorem 7

The algorithm runs in $O(m \log B \ M(n,m))$ time, where M(n,m) is the complexity for solving a generalized maximum flow problem in a network with n vertices and m arcs.

Reference

K.D. Wayne: Generalized Maximum Flow Algorithms, Ph.D. thesis, Cornell Univ., 1999.