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A binary search algorithm for the generalized maximum balanced
flow problem
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Abstract

We consider the generalized mazimum balanced
flow problem (GMBF), i.e., the problem of find-
ing a generalized mazimum flow in a network such
that each arc-flow value is bounded by a given
fixed proportion of the total flow value of a gen-
eralized flow, and propose a polynomial algorithm
for this problem. Problem (GMBF) can be re-
garded as a generalization of the mazimum bal-
anced flow problem (MBF) for which several effi-
cient algorithms have been proposed by Mmoux
and Zimmermann, etc.

1. Problem (GMBF)

Let G = (V, A) be a directed graph with vertex
set V and arc set A, where n = |V| and m =
|A| > 2. s € V (resp. t € V) is given source (resp.
sink). 8%a (resp. 8~ a) (a € A) is tail (resp. head)
ofa€ A *v={a€ A:0*a=v}forveV.
Let u(a) be an integral capacity of a € A. For
each a € A, v(a) is a rational gain and a(a) is
a rational balancing rate, where each of them is
expressed as a ratio of two integers 3—(1’%% or ZJ‘[’(%
Given a network N = (G, u,v, a, 3, s,t), problem
(GMBF) is defined as follws:

(GMBF) : Maximize valy(f) s.t.
O f(v) =0, (veV —{st}),
0 < f(a) < u(a), (a € A4), (22)
f(a) < afa)valn(f) + B(a), (a€ A),

where integers ((a) (¢ € A) are given, and
V() = Taes (9@ f(a) and 0,f() =
Yacst(w) (@) — Xaes-(v) ¥(@)f(a). Given a net-
work N' = (G, u,~,s,t), problem (GMF) is:
(GMF): Maximize valy: (f) s.t. (2.1)~(2.2).
Given a network N,, i.e., N with a parameter z >
0, consider problem (GMF(z)), where f in (2.1)
and the inequalities in (2.2) should be replaced by
f. and
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0 < fa(a) < uz(a), (a € A), (2.4)

where u,(a) = min{u(a),a(a)z + B(a)}. A flow f
of N is a funcion f : A = R, satisfying (2.1) ~
(2.3), where R is the set of nonnegative reals. A
flow f, of N, is a funcion f, : A — R, satisfying
(2.1) and (2.4). The value of a flow f of N is
valy(f). An optimal flow f of N (resp. f, of N,)
is a flow f of N (resp. f, of N,) maximizing the
value of f (resp. f, ). For a flow f, of N,, define

A(f.) = AT (f) U A~ (f2),
v - [w@-f@ @earm),
z v(a@)f(a) (a € A(f2)),
Fe(a) = { y(@) (e € AT(f),
1/v(a) (a€ A™(f2)),
where AT(f,) = {a € A : f(a) < uy(a)},

A_(fZ) = {a = (],Z) Q= (7'7.7) € Ava(a') > 0}
A residual network w.r.t. a flow f, of N is defined

as N.(f:) = (G(f:) = (V,A(f2)),ufs,7)=,5,%).
The dual (DGMF(z)) for (GMF(z)) is
(DGMF(z)): Minimize ) ,c 4 u.(a)f;(a) s.t.
7’”(0») + 02(a) 2 0,(a € A4),
02(a) 2 0,(a € A),
m,(v) :areal, (veV),
where m,(s) = 0,7.(t) = 1, and 4" (a)

7,(07a) — vy(a)w, (0" a) Define 0,(a) =
max{0,~5"*(a)}. Complementary slackness con-
ditions imply that if f,(a) > 0 (resp. f.(a) <

u,(a)) for each a € A,then 32 (a) + 6,(a) = 0
(resp. 0,(a) = 0). Define A, = {a € A : u(a) >

)z +Ha)}, C(6:) = Taea, @(a)f:(a),and
D(ez) =, EaeAz /B(a)ez(a) + EaGA—Az u(a)9z (a)
The optimal value of (DGMF(z)) is expressed as
valy, (f2) = C(0%)z + D(03), where f; is optimal
in N, and 6} is optimal for (DGMF(z)).

Proposition 1
For an optimal flow f; of N.,a function F(z) =
valn, (f7) is nondecreasing, continuous, piecewise
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linear, and concave. O

Proposition 2
The value z* of an optimal flow in N is

oo [ max{ziz= 20 (DO #1),
max{z : z = valy, (f7)}, (D(6;) = 1),
where 0 1s a dual optimal solution. a

Let P, be a directed path from v € V to t in N'.
The gain of P, wr.t. v is y(P,) = Ilep,v(a).
The highest gain path from v to ¢t is maxy(FP,). A
labeling function w.r.t. N’ is a function p : V —
R+ U{oo} such that u(t) = 1 where Ry = {r €
R, : r > 0}. The relabeled gain of a € A w.r.t. y
and p is defined by v,(a) = v(a)u(0a)/u(d"a).
The canonical label of v € V in N' is the inverse
of the highest gain path from v to ¢. If no such
path exists, its label is co.

Theorem 3[Wayne,1999]
A flow g of N' is mazimum if and only if there
exists a labeling function u such that:

W@ <1, (aeN'(g)),

pv) =00,  (WgT'),
where N'(g) is the residual network w.r.t. g, and
T' is the set of vertices reachable to t by using arcs
in N'(g). O

2. Binary Search Algorithm

Input: N = (G,u,v,a,pB,s,t)
QOutput: an optimal flow if it exists
Step 1: Initialization
Set U «+ mB?, where B =
ma'xae/l{%) (a)’ M (a‘)v ay (a)a u(a)’ |ﬂ(a)|}
If valy, (fu) > U, then stop.
Set L + max{0, maxq,e4 %’féaﬂ)l}
If valy, (f) > L, then go to step 3
else if C(07) < 1, then stop.
Step 2: Decision of a lower bound
Set z, + % “2!_‘3 2 for each a € A.
Choose a maximal set
{2a; : 2a; > Ly 24; < 2,, (1 <3 <m/ - 1)}
for some m' < m.
Set Za,y = U, 2oy < L, and t < 0.
repeat
Set i 1 +1.
If valy,, (fza,-) > zq;, then set L < z,,

i

and go to step 3.
If C(O;"'i—l) # C’(G;ai), then
{ set
D(6;,,)-D(63,, )
C(b:,, )-C0:,)"
If valy , (f) > 2/, then set L + 2’ and go
to step 3
else if C(G:ﬂi) < 1, then stop.
}
until s = m' + 1.
If i = m' + 1, then stop.
Step 3: Binary search
repeat
Set z « %’Q
Stop if valy, (f,) = z and C(0*,) < 1.
If valy(f,) > 2z, then set L « 2
else set U « z.
until U - L < Bé"“
Step 4: Decision of an optimal flow

* D(0;,)
Set z* 1—_"6(%—55

Find an optimal flow f,- of N,- and stop.

z

Proposition 4

For any 2, D(0,) (resp. C(6,) ) is an integral
multiple of T,7 (resp. (['1T2)~!) where Ty =
HaeA('yo(a)'yl (0,)) and 'y = HaeAal(a). O

Proposition 5

Let [L;,U;] be the interval after ith repetition of
Step 3. There ezists an optimal value 2" such that
L; < 2" < U; and C(6},) < 1 if the algorithm is
contlinuing. a

Proposition 6

Let [L,U] be the interval at the beginning of step 4.
There is a cornerpoint (2', F(2')) with 2’ € [L,U],
where a cornerpoint is a point (', F(2')) such that
F(2) is not differential at z = 2'. )

Theorem 7

The algorithm runs in O(mlog B M(n,m)) time,
where M (n, m) is the complezity for solving a gen-
eralized mazimum flow problem in a network with
n vertices and m arcs. a
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