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Optimum Requirement Cycle with a Monge-like Property
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1 Introduction

The optimum requirement spanning tree problem (ORST
problem) studied by Hu [5] is often discussed as a prob-
lem of finding a communication network of tree type
with the minimum average cost. However, from the
viewpoint of reliability, k-connected graphs (k > 2) are
desirable as the topologies of communication networks.
To minimizes the cost of construction, we take up in
this paper cycle graphs (connected regular graphs of
degree 2, just call them cycles). Here, we consider a
problem of finding a cycle which minimizes an objec-
tive function similar to that of the ORST problem.
Before detailed discussion, let us define some ba-

sic notation and review the ORST problem. Let V =
{0,1,...,n — 1} be a set of n vertices, (Z) the set of
all pairs of distinct vertices in V, G the whole set of
simple graphs with the vertex set V, and T(€ G) the
whole set of spanning trees on V. A graph G € § with
an edge set E is denoted by G = (V, E), and the edge
e € E connecting two vertices v,w € V is denoted by
e = (v,w). For a graph G € G, let d(v,w;G) be the
distance (the length of the shortest path(s)) between
two vertices v and w on G. Assume that a nonneg-
ative value r,,, (called requirement, representing the
frequency of communication between v and w) is given
to each pair {v,w} € (‘2/), where 7y = 7y, holds. Hu
[5] defined an ORST as a tree T € T which minimizes

2

{"'w}e(‘;)

(1) (v, w; T)ryuw,

and showed that an ORST is obtained by the Gomory-
Hu algorithm [3] when the degrees of vertices are not
restricted. On the other hand, Anazawa [1] considered
a problem of finding a tree T' € 7" which minimizes

f!l(T) Z g(d(’l), w; T))"'vw
{v,w}e(‘;)

(where g(z) is an arbitrary real-valued function of real
variable z such that it is monotone nondecreasing on
[0,n — 1]) under the constraint that, for each vertex
v, the degree of v in T denoted by deg(v;T) cannot
exceed a given integer [, that is,

deg(v;T) <1, holdsfor all v € V, (1)
where
n—1
o>h> 2l >1 and Y 1, >2n-1) (2)
v=0
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are assumed. And he showed that if {r,,} satisfies

(3)

for all 4-tuple {v,v’,w,w'} (v < v',w < w') such that
Tyw, Tv'w' s Tyw and 7y, are all defined, then a partic-
ular tree T* € T (which is obtained by a sort of greedy
algorithm but is explicitly definable) is a solution to the
problem. Condition (3) seems a little tight, but there is
a case where the condition reflects a practical situation
(see [1]). Also, condition (3) is similar to the Monge
property, which is named after the French mathemati-
cian Gaspard Monge and rediscovered by Hoffman [4]
(compactly reviewed by Pferschy et al. [6) and Deineko
et al. [2]). Monge property is originally discussed in the
classical Hitchcock transportation problem, and known
to make some NP-hard problems (ex. travelling sales-
man problem) efficiently solvable (see [6]).

Here, we define the problem to be considered in
this paper. Let C(€ G) be the set of all cycles with the
vertex set V. For a cycle C € C and two vertices v and
w on C, there exist two paths between v and w, say P;
and P,. Suppose that the lenght of P, is shorter than
or equal to that of P;. Then the lenght of P, equals
d(v,w;C) and that of P, equals n — d(v,w;C). Let
Pow (0 < pyw < 1) be the relative frequency of using
P;. Then the average distance between v and w on C

is defined by

Tyw + Tylw! Z Tyw' + Tyiw

dave(v, w; C) = pyyd(v, w; C)+(1—pyw)(n—d(v,w; C)).

Assume that p,,, is expressed by p(d(v, w; C)) for any
{v,w} € (%), where p(d) is a monotone nonincreasing
function of d defined on [0, 3] and satisfies 1 > p(d) > 1
for d € [0, 3]. The problem we want to solve is to find
a cycle C € C whick minimizes a function

2

{vw}e(3)

fAVG(C) = dAVG(vv w;C)rva

and we call a cycle minimizing this function an opti-
mum requirement cycle (ORC).
The main result of this paper is the following

Main Theorem Let

(0,1) fori=1
ef=¢ (i—2,7) fori=2,3,....n—-1 |
(n-2,n-1) fori=n

and C* = (V,E*) where E* = {ey,ea,...,€x}.
{rvw} satisfies condition (3), then C* is an ORC.

If
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In this paper, after giving some lemmas without
proofs in Section 2, we will present the proof of Main
Theorem in Section 3.

2 Lemmas

Lemma 1 For any cycle C € C and any vertices v,
w, v' and w' on C, if d(v,w;C) < d(v',w’;C), then
dava(v, w; C) < dava(v',w'; C) holds.

For a cycle C = (V,E) € C and a path P =
(v1,...,ux) (k=2o0r 3) of C, let
[ In/2} ifk=2
=1 ln=-1)/2)  ifk=3"
where | 2| is the maximum integer not exceeding z, and
let
P(u;) = (V(w:), E(ui)) (i=1ork),

where V(uy) U V(ug) CV, V(uy) N V(ug) =0,
V(‘dl) = {81(—_— ul),sz,...,sm},

E(uy) = {(si,8i+1) € Eli = 1,2,...,m —
V(uk) = {tl(= Uk),tz, P ,tm},

E(Uk) = {(tiati+l) € Ell =12,...,m— 1}

are satisfied. For the path P = (uy,...,u;), we define
an isomorphism gp : V(u;) — V(ux) by op(s;) =
ti (i = 1,2,...,m). Also, we consider the following
transformation of C' which may reduce the f,y value:
Let Vz = {v € V(u;)|v > op(v)}, and exchange v and
op(v) for all v € V,. We call such a transformation
biasing with respect to op. Further, let C’ be a cycle
obtained from C by biasing with respect to op.

1},

Lemma 2 If {r,,} satisfies condition (3), then

favelC') < fave(C)
holds.

Next, we show a property of a subgraph of the cycle
C* = (V,E*) defined in Main Theorem. Let V, =
{0,1,...,v -1} 1 <v < n) and P} = (V,,E}) where
E} = {e},e},...,e}_1}. Note that C* is obtained by
adding e;, = (n — 2,n — 1) to P}.

Lemma 3 Suppose that a cycle C = (V,E) € C con-
tains a subgraph P} (1 <v < n), thatis, E} € E holds.
For an arbitrarily-selected path P = (uy,...,ux) (k =
2 0r3) of C, let C' = (V,E') € C be a cycle obtained
from C by biasing with respect to op. Then C' also
contains P}.

3 Proof of Main Theorem

Let C* = (V,E*) € C be the cycle defined in Main
Theorem. For a cycle C = (V,E) € C, let

o= {

We will show that any ORC can be transformed into
C* with the f,vc value unchanged.

Let C = (V,E) be an ORC with vc < n — 1. Note
that C contains a subgraph P, . Also, let v* be a
vertex with e} . = (v*,v¢), and v** a vertex with v** >
ve and (v*,v**) € E (such v** obviously exists). We
can consider a path P/ = (v**,v*,...,0,...,v¢) of C,
and let v; be a vertex on P’ adjacent to vc. Then it is
obvious that v* < vy holds. Let P = (uy,...,u) (k=
2 or 3) be a subpath of P’ satisfying

if E+E*
if E=E"*.

min{v > 0le} ¢ E}
n-—1

d(uy,v*;C) = d(uk,v1; C).

Defining o p for the path P in the same way with that in
Section 2, we find that op(v*) = v; and op(v**) = vo
hold. Also, let C’ € C be a cycle obtained from C by
biasing with respect to P. Then we find from Lemmas
2 and 3 that C’ is also an ORC and contains Py_.
Also, C' has an edge e, = (v*,v¢), which implies
that ver > ve holds.

By continuing this process, we find that C* is an
ORC.
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