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Successive Convex Relaxation Method applied
to Nonlinear Programs
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1 Introduction

We are interested in finding the global optimal value of the following nonlinear program:

max clx
(NLP) { st. xeF
where (2)
_ n. 95(®) <0, bEa=m
F = zeh: hi(x) =" Pz +ple+pm =0, 1<k<my |’
k

ceR", g: R"— R™,and h: R* — R™ is a quadratic (possible linear) vector function.

We assume that the feasible region of the (NLP) is bounded, and that the vector function
g(-) is sufficiently smooth on the feasible region, e.g., twice continuously differentiable [1].

In general, solving this type of problems is extremely hard and developing an efficient and a
general framework to solve it is a significant subject. Our approach is based on the Successive
Convex Relaxation Method (SCRM), originally proposed for nonconvex quadratic optimization
problems [2, 3], which we extended to nonlinear programs.

We will focus on the implementation of this method which employs some heuristic schemes
of [4].

2 LP relaxation of (NLP)

Let denote by 8™ the space of n x n—symmetric matrices.
Since g;(*) € C* (j =1,2,---,my,) from our assumption, we can find Q; € S™ such that

T
t(z) = gj(x) — 2" Q;x
becomes convex in F 3 x. Then, we can rewrite the feasible region of (NLP) as

Li(x) +27Q,x <0, 1<j<m, }

_ n .
J—“_{a:eR 2P+ plr+m =0 1<k<m,

The LP relaxation of F is defined by

; 3X € S" such that
F =¢x€eR": lj(x)+Q;¢ X <0,
Pk°X+p{$+[Lk =0,

. . . AL, . .
where o denotes the canonical inner-product in §".. Observe that F is a convex set, since it
is defined by inequalities of convex functions, and ecuality of linear functions.
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3 Successive Convex Relaxation Method (SCRM)

The algorithm starts with a convex set Cyp 2 F, e.g., box constraints, and successively solves
nonlinear convex programs with a linear objective function, and a feasible region defined by
F t and other quadratic or linear constraints involving  and X. The details can be found in
the refereed papers. Then, it can be shown that the algorithm generates a sequence of values
(o > (4 > --- which are upper bounds of the global maximization value of the (NLP). The
algorithm terminates after it obtains a close approximation of the global maximization value
whenever it is known. ‘

4 Concluding remarks

The SCRM is a powerful framework to solve nonlinear programs in general. However, much
of its implementation regarding efficient heuristic procedures are not certain, yet. In this
talk, we will improve some heuristic procedures proposed in [4] like diminishing the number of
constraints or including tighter convex constraints in order to increase its efficiency. Numerical
results using the nonlinear program solver NUOPT will be shown in the talk for benchmark
nonlinear programs of small size.
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