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1. Introduction

A model-based justification for the eigenvalue
method (EM) of AHP is proposed by Sekitani and
Yamaki [2]. Let a; and w; be the i*" row vector
of a comparison matrix A of order n and the ith
component of a weight vector w for n objects, re-
spectively, they call w; the ith self-evaluation value
and (a;w — w;)/(n — 1) the i** non-self-evaluation
value. Let I = {1,...,n}, they formulate the
following two discrepancy minimization problems
with n ratios of the self-evaluation value to the
non-self-evaluation value:
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Both a optimal solution of P; and P, are a prin-
cipal eigenvector of A, that is the weight vector of
EM.

In order to combine the two optimization
models P, and P, this study develops a new
discrepancy-minimization problem that evaluates
the ratios of w; to (a;jw — w;)/(n — 1) and their
reciprocals. Typical variation of AHP is the in-
complete information case, that is, some entry of
A are missing. This study shows that above three
models (P, P, and the combined one) can be ap-
plied to such case of AHP as a natural extension
of the complete case.

2. Generalized non-self-evaluation value

For AHP with the incomplete pairwise compar-
isons, let a;; be the pairwise comparison value
when the pair of the alternatives 7 and j is eval-
uated by a decision maker, and let a;; be 0 when
the pair of the alternatives ¢ and j is not evalu-
ated. Let a;; = 1 for i € I and aj; = 1/a;; for
ai; > 0. Then the nonnegative matrix A = (a;;)
is well defined. We call A = (a;;) an incomplete
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pairwise comparison matrix. We then define K;
as the number of the positive off-diagonal element
a;j fori e I.

As in the case of complete information, w; is the
ith self-evaluation value and (a;w—w;)/K; is called
the i*" non-self-evaluation value. This definition
of non-self-evaluation value is a natural extension
of the complete information case, because in this
case we have K; =n—1fori € I.

3. Discrepancy models

We discusses the incomplete information case in
the model-based AHP which is based on the self-

. evaluation and the non-self-evaluation. The com-

plete information case is dealt as a special case of
the incomplete information case.

By introducing the generalized definitions of the
self-evaluation value w; and the non-self evalua-
tion value (a;w—w;)/K; into P; and P,, we formu-
late the foll‘owing discrepancy minimization prob-
lems with the ratios of the self-evaluation value to
the non-self-evaluation value:

. . QW — Wy . . a;w — W;
Qi s maxmin =, ond Qe minmax ==
P,/ P, is identical to Q;/Q2 with the complete in-
formation, that is K; = n — 1 for 4 € I. For
the matrix A, we define the ith row vector @; =
(a; — €;)/K; for i € I, where e; is the i** unit row
vector. The matrix A consists of the it" row vector
i€l
Lemma 1 Suppose that an incomplete pairwise
comparison matriz A is irreducible. Then A is
also nonnegative and irreducible.

Lemma 2 Suppose that an incomplete pairwise
comparison matriz A is irreducible. Then the
principal eigenvalue of A is a single root of its
characteristic equation and there ezists a positive
principal eigenvector of A.

The following two theorems state the relationship
between a principal eigenvector of A and an opti-
mal solution of @, or Q.

—224—



- Theorem 3 Suppose that A is nonnegative and
irreductble. Let v be any positive n-dimensional
vector other than a principal eigenvector of A,
then min;ey ﬁv"ﬂ < Amax < maX;es %j;’i, where Amax
is the principal eigenvalue of A.

Theorem 4 Suppose that an incomplete pairwise
comparison matric A is irreducible. An optimal
solution of Q1 is equal to a positive principal
eigenvector of A, and vice versa. An optimal so-
lution of Qo is also equal to a positive principal
eigenvector of A, and vice versa.

In order to combine the two optimization problems
Q1 and @5, we propose the following discrepancy
minimization problem that evaluates the ratios
of the self-evaluation value to non-self-evaluation
value and their reciprocal:

aw—w; Kjw;
Q03 : minmax ,
w>0 iel Kiw; ~aw— w;
Lemma 5 Suppose that an incomplete pairwise
comparison matriz A is irreducible.
an optimal solution.

Theorem 6 Suppose that an incomplete pairwise
comparison matric A is ir{'educible. Let j\max be
the principal eigenvalue of A, then the optimal val-
ues of Q3 is max{/\max, )\m},x}. Furthermore an
optimal solution of Q3 is equal to a positive prin-
cipal eigenvector of A, and vice versa.

Theorem 6 asserts that @), Q2 and Q3 have the

same optimal solutions.

4. Some properties of discrepancy models

In order to describe the structure of the incom-
plete pairwise comparisons for n alternatives, we
consider the following. undirected graph with n
nodes: If a pair (4,7) of alternatives 7 and j is
compared by a decision maker, the arc (i,7) be-
tween the node i and the node j is defined. We
denote the graph corresponding to the incomplete
pairwise comparison matrix A by G(A). In the
case of the incomplete information, the graph is
not complete. '

Harker method [1] is available for evaluating the.

weight vector from an irreducible incomplete pair-
wise matrix A of order n and the weight vector
of Harker method is a principal eigenvector of A
with the diagonal entry a;; replaced by n — Kj.
Therefore we formulate the following optimization
problem corresponding to Harker method:

a;w
Qq: m1nmax———+n Ki—1.
w>0 €]l w;

Then Q3 has

Lemma 7 Suppose that A is an incomplete pair-
wise comparison matriz of order n, and that it is
irreducible. An optimal solution of Q4 is equal to a
principal eigenvector of A with the diagonal entry -
ai; replaced by n — K;, and vice versa.

Theorem 8 Suppose that A is an incomplete
pairwise comparison matriz of order n, and that
it is irreducible. Assume that K =--- = K,. An
optimal solution of Q1, Q2 and Q3 is equal to an
optimal solution of Q4, and vice versa.

All nodes of the graph G(A) have the same degree
if and only if K; = -+ = K,. Such a graph is
called regular. The above theorem can be also
expressed in terms of graphs: 7

Corollary 9 Suppose that A is an incomplete
pairwise comparison matriz of order n, and that
G(A) is connected and regular. An optimal solu-
tion Q4 is equal to an optimal solution of Q1, Q2
and Q3, respectively, and vice versa.

The following theorem guarantees that both Q3
and Q4 provide non-biased weights for the consis-
tent pairwise comparison values.

Theorem 10 Suppose that A is an incomplete
pairwise comparison matriz of order n, and that
it 1is irreducible. Assume that the optimal value of
Qs is n. An optimal solution of Q4 is equal to an
optimal solution of Q3.

The above two assertions means from Theorem
6 that an optimal solution of Q4 is an optimal

~solution of Q; for i = 1,2,3, respectively.

Corollary 11 Suppose that A is an incomplete
pairwise comparison matriz of order n, and that
it is irreducible. Assume that the optimal value of
Q4 is n. An optimal solution of Q4 is equal to an
optimal solution of Q; fori=1,2,3, res;iectively.
Here, we consider the special structure of G(A), a
spanning tree.

Corollary 12 Suppose that A is an incomplete
pairwise comparison matriz of order n, and that
G(A) is a spanning tree. An optimal solution
of Q4 is equal to an optimal solution of Q; for
1 =1,2,3, respectively.
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